Получение оптически селективных и чёрных оксидных плёнок на алюминии и его сплавах при поляризации переменным асимметричным током
На правах рукописи
Клушин Виктор Александрович
Получение оптически селективных и чёрных оксидных
плёнок на алюминии и его сплавах при поляризации
переменным асимметричным током
05.17.03 – «Технология электрохимических процессов и защита от
коррозии»
Автореферат диссертации на соискание ученой степени
кандидата технических наук
г. Новочеркасск – 2011 г.
Работа выполнена в государственном образовательном учреждении высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)»
Научный руководитель: | доктор технических наук, профессор Кудрявцев Юрий Дмитриевич |
Официальные оппоненты: | доктор технических наук, профессор Селиванов Валентин Николаевич |
кандидат химических наук, доцент Савельева Елена Анатольевна |
Ведущая организация: Научно–исследовательский институт
физической и органической химии Южного федерального университета, 344090, г. Ростов–на–дону, пр. Стачки, 194/2
Защита состоится 01 марта 2011 года в 11 часов на заседании диссертационного совета Д 212.304.05. при государственном образовательном учреждении высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)» в 107 ауд. главного корпуса по адресу: 346428, г. Новочеркасск, Ростовская область, ул. Просвещения, 132.
С диссертацией можно ознакомиться в библиотеке государственного образовательного учреждения высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)».
Автореферат разослан 31 января 2011 года
Учёный секретарь
диссертационного совета Жукова И.Ю.
Общая характеристика работы
Актуальность темы. Разработка дешёвых и экологически безопасных способов получения оптически селективных покрытий (Пк) позволит расширить использование солнечной энергии как альтернативу стандартным источникам тепла: электрической энергии и углеводородному сырью. Существующие в настоящее время способы получения оптически селективных Пк обладают целым рядом существенных недостатков: высокой энергоёмкостью процесса, многослойностью Пк и длительностью его нанесения (3 – 4 часа), применением дорогих и экологически вредных компонентов. Поэтому для успешного использования солнечных водонагревателей на российском рынке необходима разработка новых технических решений в области получения оптически селективных покрытий.
Оптически черные светопоглощающие Пк – это важная часть современных средств отображения информации и перспективные терморегулирующие Пк. Большое значение чёрные Пк имеют при изготовлении приборов индикации для автомобилей и самолётов. Традиционной технологией производства оптически черных Пк является применение какого – либо поглощающего вещества. Однако такие Пк не обеспечивают оптимальных характеристик с минимальным уровнем отражения.
Электрохимические методы позволяют достаточно просто получать анодный оксид алюминия с заданными функциональными свойствами, которые можно изменять, если поры оксида заполнить теми или иными органическими или неорганическими веществами, вводимыми в раствор электролита. Представляется перспективным на базе анодного оксида алюминия получение оптически селективных и черных Пк с применением переменного асимметричного тока. Исследования по использованию переменного асимметричного тока для получения таких Пк отсутствуют. Вместе с тем, это направление весьма перспективно, так как позволит найти эффективное решение ряда важных технологических задач. Использование электрохимического метода весьма привлекательно еще и тем, что он прост и экономичен по сравнению с другими методами.
Таким образом, получение оптически селективных и чёрных оксидных Пк с использованием переменного асимметричного тока является важной научной и прикладной задачей.
Цель работы – получение оптически селективных и чёрных оксидных плёнок на поверхности алюминия и его сплавах при поляризации переменным асимметричным током.
Для достижения поставленной цели решали следующие задачи:
– разработка нового способа подготовки поверхности алюминиевых сплавов при получении оптически селективных покрытий;
– разработка нового способа получения оптически селективных и чёрных покрытий;
– разработка составов электролита и режимов формирования оптически селективных и чёрных покрытий при поляризации переменным асимметричным током;
– изучение закономерностей формирования и оптических свойств оксидных покрытий на поверхности алюминиевых сплавов, полученных при поляризации переменным асимметричным током;
– исследование структуры и фазового состава оптически селективных и чёрных оксидных плёнок на сплавах алюминия;
– разработка фторопластсодержащей полимерной дисперсии и состава прозрачного полимерного слоя, стойкого к воздействию ультрафиолета;
– исследование возможности использования микродугового оксидирования для получения оптически чёрных покрытий;
– изучение электрохимических процессов, происходящих при формировании оптически селективных покрытий на поверхности сплавов алюминия;
– проведение лабораторных испытаний оптически селективных покрытий на термостарение.
Научная новизна работы:
– теоретически обоснована и экспериментально доказана эффективность использования переменного асимметричного тока для получения оптически селективных и чёрных оксидных плёнок на алюминии и его сплавах;
– разработан новый способ получения оптически селективных и чёрных покрытий на поверхности алюминия и его сплавах при поляризации переменным асимметричным током;
– разработан новый способ подготовки поверхности сплавов алюминия;
– установлено, что разработка нового способа подготовки поверхности алюминиевых сплавов позволяет получить развитую нано-
структурированную поверхность, обеспечившую высокие оптические свойства покрытий;
– установлено влияние на тепловоспринимающую способность оптически селективного покрытия нанесение прозрачного полимерного слоя,
стойкого к воздействию ультрафиолета;
– установлено, что оптические свойства покрытий обусловлены
высокодисперсным никелем, накапливающемся на дне пор;
– накоплен новый фактический материал по влиянию соотношения
амплитуд катодного и анодного токов, компонентов электролита
на процесс формирования оптически селективных и чёрных покрытий;
– установлено, что разработанные покрытия по своим оптическим
свойствам конкурентоспособны по отношению к зарубежным
аналогам.
Практическое значение полученных результатов. На основании результатов исследований разработаны способы получения оптически селективных и чёрных Пк, позволившие повысить эффективность преобразования коллектором солнечной энергии в тепловую и снизить стоимость Пк. Предлагаемые технологические решения дают возможность: снизить энергоёмкость процесса до 10 кВтм–2; получить однослойное Пк с высокими оптическими свойствами в течении 2,5 мин; исключить использование дорогостоящих компонентов; обеспечить экологическую безопасность нанесения Пк.
Разработанные покрытия были испытаны в ООО "Научно-производственный комплекс "ВЭТО"" г. Санкт-Петербурга и рекомендованы к использованию в гелиотехнике, электронной, автомобильной и военной отраслях промышленности. Техническую новизну практических результатов работы подтверждают шесть патентов РФ.
Автор защищает:
– новый способ получения оптически селективных и черных оксидных покрытий на алюминии и его сплавах;
– новый способ подготовки поверхности алюминиевых сплавов АД 31 и А 5 М;
– теоретические закономерности и оптимальные условия формирования оптически селективных и черных покрытий на поверхности алюминиевых сплавов АД 31 и А 5 М из разработанных составов электролита с применением статистических методов планирования экспериментов;
– влияние нанесения прозрачного полимерного слоя на тепловоспринимающую способность оптически селективного покрытия.
Личный вклад соискателя. Автор принимал участие: в разработке методики проведения эксперимента; изготовлении экспериментальных образцов с оптически селективными и чёрными покрытиями; определении комплекса их физико-химических и оптических свойств; в разработке механизма формирования оптически селективных покрытий на алюминиевых сплавах в условиях поляризации переменным асимметричным током; обобщении экспериментальных данных и формировании выводов.
Апробация результатов диссертации. Основные результаты и положения работы изложены на II всероссийской научно – практической конференции «Защитные покрытия в машиностроении и приборостроении», г. Пенза, 2005 г.; на научно - практической конференции «Современные технологии упрочнения металла и нанесения покрытий», г. Ростов-на-Дону, 2005 г.; на двадцать седьмой международной конференции «Композиционные материалы в промышленности», г. Ялта, 2007г.; на всероссийской конференции «Электрохимия и экология», г. Новочеркасск, 2008 г.; на пятой международной научно – практической конференции «Исследование, разработка и применение высоких технологий в промышленности», г. Санкт-Петербург, 2008 г.; на четвёртой всероссийской конференции «Химия поверхности и нанотехнология», г. Санкт-Петербург, 2009 г.; на третьей всероссийской конференции по наноматериалам «НАНО – 2009», г. Екатеринбург, 2009 г.; на третьей международной конференции «Деформация и разрушение материалов и наноматериалов», г. Москва, 2009 г..
Публикации. По теме диссертационной работы опубликовано 16 работ, из которых 2 статьи в журналах ВАК, 6 патентов РФ, материалы международных и всероссийских конференций – 8.
Структура и объём диссертации. Диссертация состоит из введения, 5 глав, выводов, списка цитируемой литературы из 176 наименований и 1 приложения. Работа изложена на 176 страницах, содержит 40 рисунков и 23таблицы.
Основное содержание работы
Во введении отражена актуальность темы диссертации, формулируется цель работы и задачи исследования.
В первой главе приведен анализ научно – технической и патентной литературы по теме диссертации. Рассмотрены анодные оксидные пленки на алюминии, модели их образования, режимы и способы формирования, композиционные Пк на основе этих плёнок. Проведён анализ электролитов и режимов для формирования цветных Пк на алюминии и его сплавах с использованием традиционного оксидирования и микроплазменных процессов. Рассмотрены оксидные плёнки алюминия, полученные при нестационарном режиме электролиза, особенности их формирования и преимущества. Проведён анализ способов получения оптически селективных и чёрных Пк, обеспечивающих эффективное поглощение солнечной энергии.
Обоснован выбор объектов исследования и пути повышения эффективности оптических свойств селективных и чёрных оксидных плёнок на сплавах алюминия.
Во второй главе описаны методы экспериментальных исследований и применяемая аппаратура.
Формирование оптически селективных и чёрных оксидных Пк проводили на предварительно подготовленной поверхности сплавов алюминия АД 31 и А 5 М при поляризации переменным асимметричным током промышленной частоты, представляющим собой две полусинусоиды разной амплитуды.
Оптически чёрные покрытия также получали с использованием метода микродугового оксидирования на установке тиристорного типа в гальваностатическом режиме.
Оптимизацию процесса формирования покрытий осуществляли с помощью метода математического планирования эксперимента Бокса – Уилсона.
В работе использован комплекс современных независимых, взаимодополняющих электрохимических и физико-химических методов исследования: вольтамперные циклические кривые (ЦВА) и циклические кривые заряжения (ЦКЗ); рН – метрия; спектрометр S – 4100; фотометр накладной ФМ – 59 – 44.2 в соответствии с условиями эксплуатации по ГОСТ 15160 – 69; терморадиометр ТРМ"И"; просвечивающую высокоразрешающую электронную и электронно-зондовую, высоковакуумную микроскопию и рентгеноспектральный микроанализ; методы определения термостарения, пористости и коррозионной стойкости в соответствии с ГОСТ; при оценке воспроизводимости экспериментальных результатов использовали методику среднестатистической оценки доверительного интервала по 3 – 4 параллельным измерениям, который характеризовался критерием Кохрена.
В третьей главе представлены и обсуждаются результаты исследований по получению оптически селективных Пк на поверхности алюминиевых сплавов; изучению влияния структуры поверхности, природы и количества органической кислоты в составе электролита, прозрачного полимерного слоя и температуры на их оптические свойства.
Получение оптически селективных покрытий – трудная задача, а в данном случае она осложняется и тем, что известные электролиты, используемые для оксидирования алюминия и его сплавов, применять нельзя, так как они не позволяют получать пористые Пк толщиной не более 1 мкм с одновременным заполнением пор высокодисперсным никелем.
На первом этапе были проведены исследования по разработке состава электролита для формирования оптически селективных Пк. Разработанный состав содержал сульфат алюминия (Al2(SO4)3·18H2O), сульфат никеля (NiSO47H2O), формалин и одну из оксикислот (лимонную, винную, аскорбиновую). Противоэлектродом служил алюминиевый сплав А 5 М.
Планирование эксперимента проводили, используя четверть реплику ПФЭ 25 с генерирующими соотношениями X4 = X1X2X3, X5 = –X1X2.
За функцию отклика поверхности (Y и Z) при формировании оптически селективных покрытий принимали коэффициент поглощения, Ас (Y), и коэффициент собственного излучения, (Z). Используя результаты матрицы планирования и крутого восхождения по поверхности отклика, установлены оптимальные условия получения оптически селективных покрытий на поверхности алюминиевых сплавов: соотношение амплитуд средних катодного и анодного токов составляет 1,3 : 1,0, температура 20 ± 4 С и время нанесения 2,5 мин.
Введение в условия подготовки поверхности алюминиевых сплавов стадии цинкования, роль которой заключалась не в создании подслоя для последующего нанесения гальванического покрытия, а в увеличении удельной поверхности, дало возможность получить высокоразвитую микроструктуру (рисунок 1). Поэтому полученные при оптимальных условиях селективные Пк обладали высокими оптическими характеристиками: Ас = 93,5 % и = 6,0 %.
Рисунок 1 – Морфология поверхности алюминиевых сплавов перед нанесением селективного покрытия
Из всех исследованных оксикислот наибольшую поглощающую способность оптически селективного покрытия и его высокую адгезию к подложке обеспечило введение в состав электролита лимонной кислоты. Её наличие в растворе электролита вследствие комплексообразования с никелем подавляет образование гидроксида никеля в катодный полупериод и облегчает доставку никеля к поверхности электрода, где он и выделяется в виде высокодисперсного никеля в порах оксида.
Для увеличения тепловоспринимающей способности оптически селективных Пк необходимо иметь на его поверхности прозрачный слой, стойкий к воздействию ультрафиолета. Проведенные разработки по получению фторопластсодержащих полимерных дисперсий, используемых для нанесения Пк на поверхность оксидированного металла способами автофореза и гетероадагуляции, позволили изучить возможность применения полимеров в виде прозрачного слоя на поверхности оптически селективных покрытий.
Нами впервые в качестве прозрачного слоя были исследованы истинные растворы фторопласта Ф – 3 МВ, Ф – 32 ЛН и кремнийорганического лака КО – 85. Из всех исследуемых полимеров для формирования прозрачного слоя на поверхности селективных Пк наиболее перспективным оказался 1 – 3 % (масс) фторопластовый лак Ф – 32 ЛН. Наличие этого слоя увеличило коэффициент поглощения до 95,0 % и незначительно повысило излучательную способность, до 9,0 %. Разработанные оптически селективные Пк обладают высокой термостабильностью (рисунок 2), что свидетельствует о возможности их использования в гелиоустановках. Причем, что очень важно, с возрастанием температуры до 250 C поглощающая способность Пк практически не изменяется, а излучательная способность уменьшается, т.е. с увеличением времени эксплуатации солнечного коллектора селективность Пк будет расти. Следовательно, в области концентраций фторопластового лака 1 – 3 % (масс) обработка оптически селективных Пк его растворами не изменяет их толщину и эффективно влияет на оптические свойства Пк.
Рисунок 2 – Зависимость коэффициентов поглощения (а) и излучения (б) от температуры. Ас –коэффициент поглощения; – коэффициент излучения.
Оптически селективные покрытия состоят из частиц оксида алюминия, имеющих размеры в интервале от 20 до 70 нм (рисунок 3). Растровая электронная микроскопия позволила установить, что внутри частиц оксида алюминия располагается высокодисперсный никель, который равномерно распределён по поверхности (рисунок 4).
Рисунок 3 – Электронно-микроскопический снимок поверх-ности алюминия с оптически селективным покрытием |
Рисунок 4 – Изображение поверхности оптически селективного покрытия на поверхности алюминиевых сплавов в рентгеновском излучении NiK – линии. Маркер – 10 мкм |