Исследование функционирования и подбор оптимальной конструкции рассеивающего выпуска сточных вод в условиях водоема и водотока
На правах рукописи
ФЕДОРОВ Святослав Викторович
ИССЛЕДОВАНИЕ ФУНКЦИОНИРОВАНИЯ И ПОДБОР
ОПТИМАЛЬНОЙ КОНСТРУКЦИИ РАССЕИВАЮЩЕГО ВЫПУСКА
СТОЧНЫХ ВОД В УСЛОВИЯХ ВОДОЕМА И ВОДОТОКА
Специальность 05.23.04 – Водоснабжение, канализация, строительные системы охраны водных ресурсов
АВТОРЕФЕРАТ
диссертации на соискание учёной степени
кандидата технических наук
Санкт-Петербург
2013
Работа выполнена в ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет» на кафедре водопользования и экологии
Научный руководитель: доктор технических наук, профессор Лапшев Николай Николаевич
Официальные оппоненты: Ильин Юрий Александрович,
доктор технических наук, профессор,
ФГКВОУ ВПО «Военный институт (инженерно-технический) военной академии тыла и транспорта имени генерала армии А.В. Хрулева», профессор кафедры жизнеобеспечения объектов военной инфраструктуры;
Гиргидов Артур Давидович,
доктор технических наук, профессор,
ФГБОУ ВПО «Санкт-Петербургский государственный политехнический университет», профессор кафедры гидравлики
Ведущая организация: ФГБОУ ВПО «Петербургский государственный
университет путей сообщения»
Защита диссертации состоится «14» октября 2013 г. в 14:00 часов на заседании диссертационного совета Д 212.223.06 при ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет» по адресу: 190005, г. Санкт-Петербург, 2-я Красноармейская ул., д. 4, зал заседаний диссертационного совета (аудитория 219).
Телефакс: (812) 316-58-72
Email: rector@spbgasu.ru
С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет».
Автореферат разослан «»
Ученый секретарь
диссертационного совета
кандидат технических наук,
доцент Пухкал Виктор Алексеевич
I. Общая характеристика работы
Актуальность темы исследования. Вопросы экологической безопасности имеют огромное значение в крупных городах и промышленных центрах. Особенно это касается водных объектов, являющихся ценным ресурсом, использующимся почти во всех отраслях народного хозяйства. За счет хозяйственной деятельности влияние человека на качество водных ресурсов в XXI веке приняло глобальный характер. С помощью огромного числа инженерных сетей и каналов по всей планете в технологический оборот запускается большая часть естественного стока воды. Цикл водопользования при производстве товаров и услуг определяет санитарное состояние водоемов. Необходимо отметить, что в данной цепочке важнейшую роль играет потенциал самоочищения водного объекта, который зависит от условий сброса сточных вод и процесса массообмена.
Сточные воды после предварительной очистки поступают в водоем, где в дальнейшем протекают процессы разбавления и самоочищения. Одной из причин ухудшения качества воды может быть увеличение нагрузки на водный объект или снижение эффективности функционирования выпусков. Свести негативное воздействие к минимуму может позволить своевременный анализ всех возможных вариантов сброса стоков и составление плана охраны вод на базе использования математического моделирования и оптимизации водоохранных мероприятий.
Специфика разработки программ водоохраны, сочетающихся с прогнозом качества воды, выдвигает определенные требования к моделям формирования качества воды. Спектр процессов, протекающих в водной среде, достаточно сложен, поэтому выбор модели должен определяться характером вопроса, требующего решения. На сегодняшний день разработан большой комплекс математических моделей, позволяющих имитировать и исследовать различные процессы в водном объекте.
Степень разработанности темы исследования. Основные (базовые) методы прогнозирования качества воды отражены в работах А.В. Фролова – И.Д. Родзиллера, А.В. Караушева, Н.Н. Лапшева, А.Д. Гиргидова, Р.В. Озмидова, А.М. Айтсама, А.М. Руффеля, Ю.А. Ибад-Заде, Л.Л. Пааля, Ю.Б. Безобразова и др. Из современных работ можно выделить результаты, полученные М. Сауди, Б.В. Архиповым, C.Г. Орадовским, С.Г. Сидиропуло, L. Teichmann. Указанными авторами решалась задача по получению общей кратности разбавления или распространения примеси в водоемах (озерах и морях) и водотоках в рамках n-мерной, стационарной и нестационарной задачи. Для этого применялись приближенный аналитический подход или численные методы решения. В большинстве методов рассматривается сосредоточенный сброс примеси. Случай рассеивающего выпуска рассматривается в работах Н.Н. Лапшева и А.Д. Гиргидова. При этом только у Лапшева расчеты начального и основного разбавления взаимоувязаны. Также в современных работах большое внимание уделяется моделированию конкретных водных объектов, где акцент исследования ставится на гидрологический режим и его влияние в распространении, и трансформации поступающих со сточными водами загрязнений.
Проведенный обзор методов отражает недостаточную изученность влияния конструкции рассеивающего выпуска на процесс основного разбавления сточных вод. В качестве рабочей гипотезы выдвигается получение эффекта основного разбавления сточных вод вследствие изменения конструктивных параметров рассеивающего выпуска.
Цель и задачи исследования.
Цель исследования изучение системы взаимодействия «рассеивающий выпуск сточных вод – водоем (водоток)» с разработкой конструкций выпусков, обеспечивающих повышение эффективности основного разбавления.
Объектом исследования является процесс основного разбавления очищенных сточных вод.
Задачи исследования:
1. Усовершенствовать модели, описывающие распространение примеси в условиях водоема (водотока) с течением времени и учитывающие функционирование рассеивающего выпуска.
2. Разработать алгоритмы и программное обеспечение для исследования зависимости эффективности разбавления сточных вод от различных видов конструкции рассеивающего выпуска и направления диктующего течения в водном объекте.
3. Провести модельные расчеты для исследования факторов, определяющих эффективность начального и основного разбавления сточных вод при функционировании рассеивающего выпуска.
4. Разработать методику подбора экономически оптимальной конструкции выпуска с учетом степени очистки сточных вод.
Методологической основой диссертационного исследования послужил анализ литературных источников по прогнозированию качества воды, основные положения нормативной документации по правовому регулированию расчета и контроля сброса сточных вод, метод математического моделирования процесса турбулентной диффузии примесей с использованием программного пакета аналитических вычислений «Maple», методы построения алгоритмов и программирования на ЭВМ, оценка влияния конструкции выпуска на основное разбавление, метод расчета приведенных затрат с учетом эффективности функционирования выпуска.
Научная новизна исследования заключается в следующем:
1. На основе аналитического решения уравнения турбулентной диффузии усовершенствованы математические модели распространения сточных вод в водоеме и водотоке в условиях нестационарной задачи. Модель проверена на данных натурных наблюдений и экспериментов;
2. Разработан алгоритм и программное обеспечение для инженеров «DISPERSION DISCHARGE IN A SEA», которое позволяет оперативно производить расчет качества воды. Результатами расчета программы выступает поле концентрации примеси в водоеме, образующееся с течением времени, а также функции распределения концентрации в продольном и поперечном направлении.
3. Исследование факторов, определяющих эффективность разбавления сточных вод от рассеивающего выпуска. На основании выполненных модельных расчетов были получены следующие результаты:
- Обобщены исследования в области начального разбавления сточных вод.
- Для условий водоема доказана интенсификация процесса основного разбавления при увеличении расстояния между оголовками на распределительном трубопроводе выпуска. Для водотока показано отсутствие влияния модификации рассеивающего выпуска на основное разбавление.
- Оптимальным условием работы выпуска является перпендикулярность направления диктующего течения по отношению к распределительному трубопроводу. Рассмотрены модификации распределительного трубопровода и показана эффективность V-образной конструкции.
- С целью улучшения условий разбавления для действующих выпусков в реке предложен режим отключения отдельных оголовков.
4. Разработана методика определения оптимальной конструкции выпуска с учетом затрат на очистку сточных вод и стоимости выпуска.
Практическая значимость и реализация результатов исследований состоит в том, что полученные в работе результаты и рекомендации могут быть использованы в инженерной практике при эксплуатировании и проектировании выпусков на станциях очистки сточных вод, аварийных сбросах канализационных насосных станций и т.д. Разработанное программное обеспечение может использоваться в проектных организациях, в дальнейшем исследовании турбулентной диффузии примесей и в учебном процессе ФГБОУ ВПО «СПбГАСУ» по дисциплине «Прогнозирование качества воды». Результаты работы представлены в отчетах о выполнении научных проектов по конкурсу грантов 2010, 2011 годов для студентов, аспирантов ВУЗов и академических институтов, расположенных на территории Санкт-Петербурга. Часть научных исследований выполнялась с участием студентов по гранту СПбГАСУ и представлены в отчете №18С/11 (Номер государственной регистрации: 01201180345). Результаты работы использованы в проектной документации для обоснования конструкции выпуска (шифр: 34.060/12 ООО «ПСБ КОНСТРУКТОР»). При разработке новой конструкции рассеивающего выпуска взамен существующей конструкции, получен экономический эффект в снижении затрат по объектам воспроизводства рыб на 582 224 руб. (в ценах 2012 г.).
Достоверность научной гипотезы, выводов и рекомендаций обеспечивается современными средствами научных исследований, использованием фундаментальных положений турбулентной диффузии, применением современных компьютерных программ, хорошей сходимостью результатов аналитических расчетов тестовых задач с результатами, полученными другими авторами в натурных и лабораторных экспериментах, а также качественным согласованием с данными функционирования действующих рассеивающих выпусков очистных станций Санкт-Петербурга.
Апробация работы. Результаты работы докладывались на научных конференциях профессоров, преподавателей, научных работников, инженеров и аспирантов университета, СПбГАСУ (3-5 февраля 2010 г., 2-4 февраля 2011 г.), Международной научно-практической конференции «Современные проблемы водоснабжения и водоотведения. Вода – 2011» (г. Одесса, ОГАСА, 8-10 сентября 2011 г.), XIV Международной межвузовской научно-практической конференции «Строительство – формирование среды жизнедеятельности» (27-29 апреля 2011 г., МГСУ), IWA 4th Восточно-Европейской конференции «Опыт и молодость в решении водных проблем» (Санкт-Петербург, Англетер, 4-6 октября 2012 г.), Международный конгресс посвященный 180-летию СПбГАСУ «Наука и инновации в современном строительстве – 2012» (10-12 октября 2012 г).
Научные работы по разработке модели и проведению исследований функционирования рассеивающего выпуска подавались на соискание грантов аспирантов вузов, отраслевых и академических институтов, расположенных на территории Санкт-Петербурга и удостаивались Премии Правительства Санкт-Петербурга в 2010 и 2011 гг. (диплом: ПСП №10691, ПСП № 11606).
Публикации. Материалы диссертации опубликованы в 12 печатных работах, общим объемом 7,95 п.л., лично автором – 5,85 п.л., в том числе 4 работы опубликованы в изданиях, входящих в перечень ведущих рецензируемых научных журналов, утвержденный ВАК РФ.
Структура и объем работы. Диссертация состоит из введения, списка используемых обозначений и сокращений, шести глав с выводами по каждой из них, заключения. Диссертация содержит 221 страницу машинописного текста, 27 таблиц, 62 рисунка, 94 формулы, 9 приложений и список использованной литературы из 121 наименования работ.
Во введении обоснована актуальность темы диссертационной работы. Определены цель и задачи работы, указана методологическая основа исследования и научная новизна.
В первой главе проведен анализ основных нормативных актов РФ, определяющих качество воды при различных видах водопользования. Рассмотрены основные методы прогнозирования качества воды. Выполнена оценка недостатков расчета в существующих работах.
Во второй главе представлена математическая модель турбулентной диффузии сточных вод при функционировании рассеивающего выпуска в условиях водоема и водотока. Математическая модель основана на аналитическом решении уравнения турбулентной диффузии. В математическом пакете «Maple» производятся первичные расчеты, и выполняется оценка достоверности получаемых функций распределения концентрации.
В третей главе проводится верификация разработанных математических моделей. Для условий водоема используются данные ГУП «Водоканал Санкт-Петербурга» о функционировании действующих выпусков на Центральной станции аэрации (ЦСА) и Северной станции аэрации (ССА), а также результаты экспериментальных исследований Е.Ф. Кононова, Ю.К. Чернуса, В.В. Морокова. Для случая водотока использовались результаты натурных экспериментов В.П. Рогуновича, Л.П. Гореловой, П.М. Ровински, Ю.А. Ибад-Заде, Л.И. Руги.
В четвертой главе рассмотрена реализация расчета разработанных зависимостей в виде инженерной программы «DISPERSION DISCHARGE IN A SEA» («Рассеивающий выпуск сточных вод в море»), показан интерфейс программы, основные принципы и алгоритмы расчета. Рассмотрены основные области применения программы.
В пятой главе представлены результаты модельных расчетов, отражающие влияние конструкции рассеивающего выпуска на эффективность начального и основного разбавления. По начальному разбавлению проанализировано влияние высоты оголовка y1, угла поворота оголовка относительно дна 0, количества оголовков M, скоростного параметра m. Построены номограммы.
Для основного разбавления в водоеме (море, озере) рассмотрено влияние положения оголовков, угла поворота диктующего течения и формы распределительного трубопровода. В реке исследовалась зависимость кратности разбавления от количества оголовков М, ширины реки B, расстояния между оголовками. Также для условий водотока проанализирована работа выпуска в режимах отключения отдельных оголовков.
В шестой главе представлены основные этапы подбора экономически оптимальной конструкции выпуска на примерах морского водоема и реки.
II. Основные положения и результаты исследований диссертации, выносимые на защиту
1. На основе аналитического решения уравнения турбулентной диффузии усовершенствованы математические модели распространения сточных вод в водоеме и водотоке в условиях нестационарной задачи
Распространение примеси в потоке под влиянием турбулентного перемешивания описывается уравнением турбулентной диффузии:
, (1)
где x, y, z – координаты; Vx, Vy, Vz – компоненты скорости течения; Dx, Dy, Dz – коэффициенты турбулентной диффузии; C – концентрация консервативного вещества; t – время; k1 – коэффициент неконсервативности.
Главной задачей является приведение уравнения (1) к более простому виду, имеющему готовое решение, путем введения переменных C1 и С2. Переменная C1 позволяет исключить слагаемое k1C. Переменная C2 учитывает конвективные члены уравнения. Коэффициент Dx выносится за скобку, а полученные соотношения Dy/Dx и Dz/Dx принимаются в качестве масштабных коэффициентов py и pz для новых осей y' и z'. В результате получаем:
. (2)
Математическая модель рассеивающего выпуска для условий водоема
Для условий водоема принимаются следующие допущения:
1) Сброс сточных вод имеет постоянный режим, который характеризуется постоянством расхода q и максимальной концентрации См в начальном пятне:
;
. (3)
2) Движение диктующего течения в водоеме принимается установившимся и плавно изменяющимся. Так как в работе рассматривается участок от точки сброса до контрольного створа (500м), то можно пренебречь поперечными составляющими скорости:
;
;
. (4)
3) Процесс диффузии идет намного медленнее в вертикальном направлении, чем в горизонтальном, за счет вертикальной плотностной стратификации:
. (5)
4) Основное разбавление начинается от створа, где струя теряет свою индивидуальность и образуется начальное пятно примеси, распределение концентрации в котором описывается функцией:
, (6)
где – переменная, описывающая распределение концентрации в продольном направлении, а – в поперечном.
5) В плане водоемы могут быть приняты безграничными по сравнению с размерами выпуска. Это позволяет предположить, что на бесконечности будет наблюдаться фоновая концентрация примеси Cф:
. (7)
Применяя принятые допущения и используя общее решение уравнения (2) в виде интеграла Фурье, получаем:
, (8)
где функция (,) может быть представлена в виде равномерного, показательного и линейного распределения концентрации.
Для качественной оценки зависимости (8) с помощью программы «Maple» производится расчет концентрации. По результатам расчета построен график (рис. 1), на котором с течением времени отражается последовательное волновое снижение концентрации за счет процесса смешения. Аналогичные закономерности получены ранее другими авторами в работах по изучению коэффициентов продольной и поперечной дисперсии.
В случае рассеивающего выпуска функция (,) описывает совокупность начальных пятен, образующихся в зоне сброса. При работе выпуска образуется M пятен шириной 2Bп и длиной 2Lп. Между границами соседних пятен расстояние 2b. Для примера представлен результат расчета при M = 5 в виде графика (рис. 2).