Разработка энергосберегающей технологии производства продуктов быстрого приготовления из крупяного крахмалосодержащего сырья
На правах рукописи
АНДРЕЕВА АЛЕСЯ АДОЛЬФОВНА
РАЗРАБОТКА ЭНЕРГОСБЕРЕГАЮЩЕЙ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПРОДУКТОВ БЫСТРОГО ПРИГОТОВЛЕНИЯ ИЗ КРУПЯНОГО КРАХМАЛОСОДЕРЖАЩЕГО СЫРЬЯ
Специальность: 05.18.01 «Технология обработки, хранения и переработки злаковых, бобовых культур, крупяных продуктов, плодоовощной продукции и виноградарства»
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата технических наук
Москва – 2010
Диссертационная работа выполнена на кафедре «Технология продуктов функционального и специализированного назначения и длительного хранения»
ГОУВПО «Московский государственный университет пищевых производств»
Научный руководитель: кандидат технических наук, профессор
Доронин Алексей Федорович
Официальные оппоненты: доктор технических наук, профессор
Мельников Евгений Михайлович
доктор технических наук, профессор
Иунихина Вера Сергеевна
Ведущая организация: ГНУ НИИ пищеконцентратной промышленности и специальной пищевой технологии
Защита состоится 27 мая 2010 г. в 11часов 30 мин. на заседании Совета по защите докторских и кандидатских диссертаций Д 212.148.03 при ГОУВПО «Московский государственный университет пищевых производств», 125080, г. Москва, Волоколамское шоссе, д. 11, ауд. 302.
Автореферат размещен на сайте www.mgupp.ru
С диссертацией можно ознакомиться в библиотеке ГОУВПО «Московский государственный университет пищевых производств».
Автореферат разослан «26» апреля 2010 г
Ученый секретарь
совета Белявская И. Г.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы
Для пищеконцентратной промышленности вопрос энерго- и ресурсосбережения при производстве варено-сушеных круп (быстрого приготовления) и крупяных продуктов, не требующих варки, имеет важное значение.
Варено-сушеные крупы - один из главных компонентов в рецептуре крупяных концентратов первых и вторых обеденных блюд. Их традиционная технология производства основана на применении варочных аппаратов, в которых осуществляется процесс гидротермической обработки в большом количестве воды с последующим удалением ее тепловой сушкой. Процесс варки и сушки чрезвычайно энерго- и трудозатратен.
Попытки создать технологии и оборудование нового поколения с использованием существующих конвективного и кондуктивного методов подвода энергии нельзя считать обоснованными и перспективными, поскольку в силу своих теплофизических характеристик, они не в состоянии передать значительные мощности к обрабатываемому материалу.
Одним из перспективных направлений технологии переработки крупяного сырья является метод инфракрасной обработки - экологически безопасный, энергосберегающий, позволяющий получить легкоусвояемые и термостерилизованные продукты. Принципиальное отличие этого метода заключается в волновом переносе энергии, что при определенных условиях дает возможность получить эффект объемного энергопоглощения тепла в обрабатываемом сырье.
В основу данной работы положены научные и практические достижения в области инфракрасных технологий и техники переработки зернового сырья ученых МГУПП А.С. Гинзбурга, В.В. Красникова, Е.М. Мельникова, Ю.М. Плаксина и др.
Разработка технологических приемов, позволяющих целенаправленно менять свойства крупяного сырья и получать высококачественные продукты, а также техническая модернизация пищеконцентратного производства с внедрением высокоэффективного оборудования на основе инфракрасного энергоподвода является актуальной задачей.
Цель и задачи исследования
Целью настоящей работы является разработка и внедрение энергосберегающей технологии производства продуктов быстрого приготовления (круп и хлопьев) из крупяного крахмалосодержащего сырья (гречневая, рисовая и перловые крупы) с повышенной энергетической ценностью и функциональными свойствами.
В соответствии с поставленной целью были определены следующие конкретные задачи:
- разработать технологические приемы подготовки крупяного сырья к интенсивной инфракрасной обработке;
- выбрать оптимальные параметры инфракрасного облучения крахмалосодержащего крупяного сырья;
- определить режимы дополнительной водно-тепловой обработки крупяного сырья, используя энергию инфракрасного излучения;
- определить микробиологические показатели, функциональные и биохимические свойства, качество и потребительские достоинства полученных крупяных продуктов;
- обосновать технологический процесс производства хлопьев, не требующих варки из крахмалосодержащего крупяного сырья, с использованием интенсивной инфракрасной обработки;
- разработать аппаратурное оформление процесса термообработки;
- разработать исходные требования к техническому заданию на линию производства продуктов из крупяного крахмалосодержащего сырья;
- провести опытно-промышленную проверку технологии и линии по производству круп быстрого приготовления и хлопьев, не требующих варки, из крупяного крахмалосодержащего сырья;
- разработать техническую документацию на крупы быстрого приготовления и хлопья, не требующие варки.
Научная новизна
Обоснована технология производства круп быстрого приготовления и хлопьев, не требующих варки, с повышенной энергетической ценностью и функциональными свойствами из крахмалосодержащего крупяного сырья.
Установлена необходимость увлажнения поверхностного слоя крупы перед интенсивной инфракрасной обработкой.
Определены параметры основных операций технологии производства круп быстрого приготовления и хлопьев, не требующих варки.
Исследованы сорбционные свойства модифицированного комплексной обработкой (инфракрасной и водно-тепловой) крупяного сырья по отношению к ионам тяжелых металлов и микроорганизмам.
Впервые установлена граница областей, в которых под действием инфракрасного облучения процесс перемещения влаги в крупяном сырье происходит в виде жидкости или пара.
Научная новизна подтверждена патентом на изобретение «Установка для термообработки пищевого материала» № 2372795 от 20.11.08. и положительным решением о выдаче патента на изобретение «Способ производства продуктов быстрого приготовления из крахмалосодержащих круп» от 04 декабря 2009 года по заявке № 2009120326/13 (028062) от 29.05.09 года.
Практическая значимость
На основании экспериментальных исследований предложена энергосберегающая технология производства круп быстрого приготовления и хлопьев, не требующих варки, с улучшенными качественными показателями, которая позволяет в 2,5 раза снизить энергозатраты по сравнению традиционной технологией производства варено-сушеных круп.
Разработана и утверждена техническая документация ТУ 9294-002-18376415-07 «Крупы быстрого приготовления» и ТУ 9294-001-18376415-07 «Хлопья зерновые, не требующие варки».
Для практического использования разработанной технологической схемы была модернизирована выпускаемая ООО «ПК Старт» установка для термообработки зерна УТЗ-4М. В настоящее время серийно выпускается и имеет утвержденную техническую документацию установка для термообработки пищевого материала УТЗ-4Ш.
Технологическая линия по производству круп быстрого приготовления и хлопьев, не требующих варки, внедрена на ОНО ГУП «БЭЗ ГНУ НИИППиСПТ» Россельхозакадемии (Бирюлевский экспериментальный завод), г. Москва; ООО «Элита-Маркетинг», г. Орел; ООО «Солнце Юга», г. Краснодар.
Апробация работы
Основные положения диссертационной работы докладывались на Международной научно-технической конференции «International Congress Engineering and Food – ICEF9», France, Montpellier, 2004; Международной научно-практической конференции «Technological innovation and enhancement of marginal products», Italia, Foggia, 2005; научно-практической конференции «Технология крупяных продуктов вчера, сегодня, завтра», Москва, МГУПП, 2007; Международной научно-практической конференции «Технология и продукты здорового питания. Функциональные пищевые продукты», Москва, МГУПП, 2008.
Публикации
По материалам диссертации опубликовано 12 печатный работ, в том числе 9 статей, из них 1 статья в журнале, рекомендованном ВАК, 2 патента РФ на изобретения и положительное решение о выдаче патента на изобретение.
Структура и объем работы
Диссертация изложена на 146 страницах машинописного текста, содержит 47 рисунков и 33 таблицы. Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, результатов исследований и их обсуждений, экономической части, выводов, списка литературы и приложений. Список литературы включает 154 наименования. Приложения к диссертации представлены на 48 страницах.
Содержание диссертационной работы
В ведении охарактеризована перспективная задача и условия современного развития пищеконцентратной отрасли пищевой промышленности в России и представлены требования, предъявляемые потребителями к готовому продукту.
- ОБЗОР ЛИТЕРАТУРЫ
В обзоре литературы рассмотрена общая характеристика крупяного крахмалосодержащего сырья, используемого при производстве пищевых концентратов, проведен анализ традиционной технологии производства и современных тенденции их развития. Приведены достоинства инфракрасной обработки крупяного сырья по сравнению с другими методами теплового воздействия. Показаны направления модернизации инфракрасной техники и повышения эффективности технологий при внедрении в пищеконцентратную промышленность современного оборудования.
На основании проведенного анализа литературы сформулированы цель и задачи исследования.
2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Исследования проводились в лабораториях кафедры «Технология продуктов функционального и специализированного назначения и длительного хранения» Московского государственного университета пищевых производств и на ООО ПК «Старт».
2.1. Характеристика объектов и методов исследования.
Исследование проводили на крахмалосодержащих крупах: перловая крупа № 1 – 2, ГОСТ 5784–60 с внесенными изменениями от 07.01.1997г.; гречневая крупа, ядрица 1 сорта, ГОСТ 5550–74 с внесенными изменениями от 01.01.1996г.; рис круглозерный, 1 сорта, ГОСТ 6292–93 и варено-сушеных крупах, вырабатываемых по ГОСТ 19327-84 с внесенными изменениями от 09.01.2000г.
Общая схема исследования (основные этапы) представлена на рис. 1.
Рисунок 1. Общая схема проведения исследования (основные этапы)
Влажность крупы при увлажнении и сушке рассчитывали по приросту или убыли массы образца и определяли по ГОСТ 15113.4 – 77, насыпную массу - по ГОСТ 10840 – 64.
Технологические результаты получения хлопьев из полуфабриката оценивали по выходу целых хлопьев, содержанию крошки и мучки. Потребительские достоинства полученных продуктов оценивали по ГОСТ 26312.2 – 84.
Биохимических показатели полуфабрикатов и готовых продуктов определяли следующими методами: степень деструкции крахмала по ГОСТ 29177 – 91, степень клейстеризации по методу Анискина В.И., содержание декстринов спектрофотометрическим методом Попова М.П. и Шаненко Е.Ф. с модификацией, водопоглотительную способность по коэффициенту набухания навески крупы (10 г) при температуре 80°С, количество водорастворимых веществ выпариванием фильтрата на водяной бане, содержание тиамина флуорометрическим методом.
Сорбционную емкость продуктов определяли по ГОСТ 4453 – 74, сорбционную емкость в отношении ионов тяжелых металлов проводили инкубированием навески сорбента в стандартных растворах тяжелых металлов, измеряя остаточную концентрацию элементов в жидкой фазе.
Микробиологические показатели определяли согласно ГОСТам: количество мезофильных аэробных и факультативно-анаэробных микроорганизмов по ГОСТ 10444.15 – 94, количество бактерий группы кишечных палочек по ГОСТ Р 50475 – 93, количество бактерий рода Salmonella по ГОСТ Р 50480 – 93.
Для исследования процесса инфракрасной обработки единичных зерен и слоя крупы созданы экспериментальные установка и стенд с инфракрасным энергоподводом на базе ООО ПК «Старт» (рис. 2).
Рисунок 2. Экспериментальный стенд для интенсивной инфракрасной обработки слоя крупяного сырья: 1 – бункер – дозатор с подъемным шибером, 2 – терморадиационные блоки, 3 – продукт, 4 – металлическая сетка, 5 – натяжной барабан, 6 – электронный весовой механизм, 7 – термопары, 8 – регистрирующий электронный блок, 9 – персональный компьютер (ПК), 10 – электродвигатель с частотным регулированием оборотов, 11 – приводной барабан.
Измерение температуры в толще обрабатываемого слоя продукта производили термопарами. Контроль температуры поверхности слоя крупы осуществляли с помощью дистанционного неконтактного инфракрасного термометра Raytek MiniTemp FS. Убыль массы обрабатываемого продукта в процессе обработки измеряли электронным весовым механизмом.
Измерение температуры облучаемой поверхности проводили на стенде с помощью батареи термопар. Визуальный контроль неравномерности теплового поля определяли по изменению цвета белых рисовых хлопьев.
Плющение крупы – полуфабриката проводили на плющильном агрегате У1-РСА-4 конструкции ВНИИЗ с гладкими валками, оснащенного амперметром, показывающим рабочий ток двигателя.
3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ
3.1. Разработка оптимальных параметров подготовки крупяного сырья к интенсивной инфракрасной обработке
Основными параметрами инфракрасной обработки является величина энергетической облученности продукта (мощность лучистого потока), его температура и влажность.
Как правило, с ростом мощности лучистого потока, подаваемого на зерновое сырье, степень модификаций в обрабатываемом сырье возрастает. С повышением мощности облучения появляется риск обгорания поверхности из-за неоднородности распределения температурного поля при интенсивной инфракрасной обработке. Однако применение высокотемпературных процессов дает значительный эффект.
Как установлено многими авторами, неравномерность инфракрасного облучения при обработке зернового сырья потоком инфракрасного излучения с мощностью 26 кВт/м2 и выше на существующем оборудовании вызывает значительный градиент температур на поверхности и в центре зерновки, а также на поверхности слоя и нижней его части, что приводит к неоднородности обработки и ухудшению качества продукта.
Нами разработаны технологические приемы, позволяющие избежать неравномерности распределения температуры при односторонней инфракрасной обработке. Это увлажнение поверхности крупы и формирование геометрии слоя крупяного сырья на ленте транспортера (рис.3, 4).
Установлено, что за счет испарения воды с поверхности крупы при мощности лучистого потока 32 – 34 кВт/м2 разность температур поверхности и центра крупы составляет 6 – 8°С, что позволяет избежать обгорания. В то же время градиент температур у круп без увлажнения поверхности составляет 25 – 35С.
Исследовано влияние толщины слоя крупы на неравномерность распределения температур по его высоте (рис. 4). В качестве критерия оценки толщины слоя взяли подовое наполнение, так как из-за специфической укладки крупяного сырья на горизонтальной поверхности трудно точно определить толщину слоя в линейных единицах.
Рисунок 3. Кинетика нагрева внешней поверхности и центральной части круп при мощности лучистого потока инфракрасного излучения 32 – 34 кВт/м2:
а – перловой, б – гречневой, в – рисовой
Исследования показали, что оптимальное количество крупы на ленте транспортера составляет 2,0 – 2,4 кг/м2. При увеличении подового наполнения растет неоднородность обработки. Снижение этой величины приводит к потере производительности технического средства инфракрасной обработки. При изменении геометрии поверхности слоя крупы, формируемого загрузочным устройством установки, с плоской на гребенчатую средневзвешенная температура продукта после инфракрасной обработки увеличивается на 10 – 20С. Градиент температуры в гребенчатом слое составляет 5 – 6С вместо 15С при плоской поверхности крупяного сырья (рис.5).
Рисунок 4. Температура крупы в зависимости от величин подового наполнения и геометрии слоя
Рисунок 5. Диаграмма величин средневзвешенной температуры слоя обработанного крупяного сырья, имеющего плоскую и гребенчатую форму
Таким образом, оптимальными параметрами подготовки крупяного сырья к интенсивной инфракрасной обработке являются: увлажнение поверхности крупяного сырья распылением 1,5 – 2% воды к его массе, перемешивание его в течение 4 – 5 минут, отлежка в течение 8 – 10 минут для достижения влажности поверхности зерновки 28 – 30% и размещение сырья на ленте транспортера с гребенчатой геометрией слоя и подовым наполнением – 2,0 – 2,4 кг/м2.
3.2. Выбор оптимальных параметров инфракрасного облучения крахмалосодержащего крупяного сырья
В зависимости от мощности излучения, влажности и вида объекта обработки перемещение воды внутри зерновки возможно в виде жидкости с испарением ее с поверхности или в виде пара, создающего условия для разрушения ее структуры. Исследовано влияние мощности лучистого потока подаваемой энергии на характер изменения структуры крупяного крахмалосодержащего сырья (гречневая, перловая и рисовая крупы) в процессе термической обработки (рис. 6).
Рисунок 6. Характеристика процесса обезвоживания круп при нагреве:
а – перловой, б – гречневой, в – рисовой
Установлено, что при инфракрасной обработке существуют две области: область традиционной сушки (II), когда вода перемещается внутри крупы в виде жидкости и испаряется с поверхности, не нарушая целостность ее структуры, и область выпаривания влаги из крупы в основном в виде пара (I), о чем свидетельствует значительное повышение давления и разрыв структуры.
Так минимальная величина мощности лучистого потока переходного периода составляет для гречневой крупы 17 кВт/м2, для перловой - 19 кВт/м2, для рисовой - 23 кВт/м2. Значение влажности при этом смещается в сторону ее увеличения с 14% до 16% и 18% для гречневой, перловой и рисовой круп соответственно.
При указанных значениях влажности и минимальной мощности лучистого потока, вызывающего термодеструкцию, температура нагрева составляет 135°С для перловой, 130°С для гречневой и 125°С для рисовой крупы (рис.7).
Рисунок 7. Зависимость температуры перловой, гречневой и рисовой крупы от исходной влажности при минимальной мощности лучистого потока, вызывающей разрушение их структуры