Разработка микросистемного акселерометра
На правах рукописи
УДК 531. 781. 2
Вавилов Иван Владимирович
РАЗРАБОТКА МИКРОСИСТЕМНОГО АКСЕЛЕРОМЕТРА
05.11.03 - Приборы навигации
Автореферат диссертации на соискание ученой степени
кандидата технических наук
Нижний Новгород - 2006
Работа выполнена на кафедре «Авиационные приборы и устройства» Арзамасского филиала Нижегородского государственного технического университета.
Научный руководитель: к.т.н., доцент. Поздяев В.И.
Официальные оппоненты: д.т.н., профессор Распопов В.Я.
д.т.н., главный научный сотрудник
ФГУП "НПП "Полет" Кейстович А.В.
Ведущее предприятие: ОАО "Арзамасский приборостроительный завод",
г.Арзамас.
Защита состоится 11 октября 2006 г, в 15:00 в ауд. 1258 на заседании диссертационного Совета Д 212.165.12 при Нижегородском государственном техническом университете по адресу: 603600, ГСП-41, Нижний Новгород, ул. Минина, д. 24
С диссертацией можно ознакомиться в библиотеке Нижегородского государственного технического университета
Автореферат разослан «____»_______________ 2006 г.
Ученый секретарь диссертационного Совета
к.т.н., доцент______________ В.В. Петров
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Стимулирующим фактором развития интегральных датчиков служит нарастающая потребность в информации в различных управляемых технических системах. В основе микроэлектромеханических систем (МЭМС) лежит концепция от “датчика к системе”, формулировка сущности которой может быть представлена в виде следующих положений:
- разработка, исследование и создание интегрированных датчиков прямого измерения, объединяющих первичный чувствительный элемент и вторичный электронный преобразователь, при условии их исполнения в рамках единого технологического процесса
- разработка, исследование и создание интегрированных компенсационных датчиков, объединяющих первичный чувствительный элемент, вторичный электронный преобразователь и преобразователь обратной связи для управления чувствительным элементом, при условии их исполнения в рамках единого технологического процесса
- разработка, исследование и создание интегрированных датчиков с вычислительными возможностями, например, реализующих многофакторность измерений, аналого-цифровое и цифро-аналоговое преобразования, адаптацию к оптимальным условиям, выполнение контрольно-диагностических функций и др., при условии их исполнения в рамках единого технологического процесса
- разработка, исследование и создание беспроводных интегрированных датчиков с малым потреблением электроэнергии и обладающих свойствами первых трех групп.
Одной из первых систематизирующих работ по микросистемным датчикам была статья Петерсена К. “Кремний как механический материал для интегральных конструкций”, опубликованная в журнале IEEE № 5 за 1982 год. Период развития интегральных датчиков составляет немногим более тридцати лет. За это время разработан широкий спектр датчиков: от интегрального тензорезистора до компенсационного акселерометра. Наиболее успешным разработчиком в области микросистемных приборов навигации в настоящее время является фирма Analog Devices (США). В нашей стране микросистемные датчики разрабатывают: Арзамасское НПП “ТЕМП-АВИА” (к.т.н. Былинкин С.Ф.), Пензенский НИИФИ (д.т.н. Мокров Е.А.), Зеленоградский НИИЭТ (д.т.н. Тимошенков С.П.), Тульский ГТУ (д.т.н. Распопов В.Я.), МВТУ (д.т.н. Коновалов С.Ф.) и др. Однако нельзя сказать, что данный период находится в своей завершающей стадии. Особенно слабым звеном является разработка интегральных датчиков параметров движения, таких, как линейные и угловые акселерометры. До сих пор отсутствуют акселерометры со стопроцентной интеграцией, а реальная точность известных разработок не превзошла рубеж 12 % от измеряемого диапазона. Под интеграцией понимается объединение функциональных узлов и блоков в единый конструктив, представляющий одну монолитную “деталь”. Повысить точность измерения интегральных акселерометров более чем на порядок возможно введением в контур отработки цепи отрицательной обратной связи, однако это связано с усложнением схемы.
Актуальность работы. Характерной чертой мирового развития информационных технологий конца XX и начала ХХI века является выделение интегрально образующихся (комплексных) технологий, к которым относятся и технологии микромеханических систем. Как в нашей стране, так и за рубежом наблюдается устойчивый рост интереса к разработкам интегральных датчиков, что связано с возможностью эффективного решения с их помощью ряда задач контроля и управления. С 30 марта 2002 года в России микросистемная техника официально объявлена критической технологией. В перечне критических технологий, утвержденном Президентом России, формулировка определена следующим образом: “Сверхминиатюрные механизмы, приборы, машины с ранее не достижимыми массогабаритами, энергетическими показателями и функциональными параметрами, создаваемые интегрально-групповыми экономически эффективными процессами микро- и нанотехнологии.” Возможности измерительных систем, таких как инерциальные навигационные системы (ИНС), инклинометры, курсовертикали и т. д., всегда определялись характеристиками первичных преобразователей. Существующие конструкции интегральных датчиков ускорений не удовлетворяют современным требованиям из-за высокого уровня трудоемкости изготовления, а также временной нестабильности метрологических характеристик и малого ресурса.
Данная работа проводилась в соответствии с тематикой научных исследований предприятия Арзамасского НПП “ТЕМП-АВИА”, а также планом основных научных работ Арзамасского политехнического института (филиала НГТУ) по проблеме “Разработка и исследование интегральных датчиков первичной информации”.
Цель работы. Целью диссертации является исследование и разработка нового микросистемного датчика ускорений и его узлов, а также построение математических моделей датчика и расчетных соотношений для теоретического определения его статических, динамических и точностных характеристик.
Задачи диссертационной работы:
1. Исследование структуры нового микросистемного акселерометра и его составляющих механических и электрических узлов с использованием полупроводниковых материалов и микромашинной технологии.
2. Разработка математических моделей датчика для анализа на стадиях НИР и ОКР всех характеристик микросистемного акселерометра: статической, амплитудно-частотной, фазо-частотной, переходной, точностной и характеристик его отдельных узлов.
3. Проведение экспериментальных исследований статических и динамических характеристик новых микросистемных датчиков ускорений, результаты которых позволяют судить о точности и преимуществах интегральных конструкций перед традиционными не интегральными.
4. Сравнение экспериментальных и теоретических результатов диссертации.
Объект исследования. Объектом исследования являются следующие устройства:
- Кремниевые маятниковые чувствительные элементы.
- Емкостные преобразователи перемещений в электрический сигнал.
- Устройства для испытаний линейных акселерометров.
- Микроэлектронные преобразователи и узлы, встраиваемые в интегральные датчики ускорений.
Методы исследования. При решении поставленных задач использованы методы математического и компьютерного моделирования характеристик акселерометра, натурный эксперимент, методы теоретической механики, теории упругости и автоматического управления.
Научная новизна работы заключается в следующем:
1. Исследована структура и разработан новый чувствительный элемент (патент РФ № 2231795) имеющий в два раза меньшую погрешность измерения, чем аналоги и разработана математическая модель нового микросистемного акселерометра с уточнением влияния характеристик составляющих элементов, в результате чего расчетные данные совпали с экспериментальными.
2. Разработан оригинальный емкостный преобразователь (патенты: № 2231796 и № 2272298). Получены теоретические соотношения для расчетов микроэлектронных преобразователей, предназначенных для совместной работы с микромеханическими ЧЭ, что дало разработчикам новый эффективный инструмент проектирования..
3. Проведены экспериментальные исследования и компьютерное моделирование статических и динамических характеристик микросистемных акселерометров на макетах и на готовых изделиях и сравнены с теоретическими результатами, что подтвердило адекватность теоретических положений.
Практическая ценность работы:
1. Теоретические решения доведены до практического использования в расчетах характеристик, в оптимизации параметров разрабатываемых интегральных датчиков ускорений и явились основой разработки схем и конструкций, защищенных патентами РФ.
2. Результаты теоретических и экспериментальных исследований в виде рекомендаций и расчетных соотношений для определения важнейших характеристик датчиков использованы для проектирования и построения интегральных датчиков ускорений типа АТ1105 и АТ1112 на диапазоны от 0,5 g до 50 g.
3. Разработанные методики определения статических характеристик интегральных датчиков ускорений и их погрешностей с помощью испытательного оборудования позволяют получить основные метрологические параметры приборов.
4. Результаты диссертационной работы внедрены в серийно выпускаемые изделия АНПП "ТЕМП-АВИА" и в учебный процесс в Арзамасском филиале НГТУ на кафедре “Авиационные приборы и устройства” по специальностям 190300 и 190900.
Реализация в промышленности. Выводы, рекомендации и результаты, полученные в диссертационной работе, внедрены на предприятии АНПП "ТЕМП-АВИА" (г. Арзамас), что подтверждается документами, приведенными в приложении.
Апробация работы. Диссертация и отдельные ее разделы обсуждались и получили положительную оценку на следующих конференциях и совещаниях:
- На региональной научно-технической конференции "Методы и средства измерений физических величин", Н. Новгород, 1997, 1998, 2002, 2003 г.
- На Всероссийских научных конференциях «Прогрессивные технологии в машино- и приборостроении». 2002, 2003, 2004 г.
- На расширенном заседании кафедры "Авиационные приборы и устройства" Арзамасского филиала НГТУ в 1998, 2000, 2001, 2002, 2003 и 2004 г.г.
Публикации. По результатам выполненных исследований опубликовано 17 работ, из них 13 статей и четыре патента на изобретения.
Объем работы. Диссертация состоит из введения, четырех глав, заключения, приложения, списка литературы, списка принятых обозначений и содержит 153 страниц машинописного текста: иллюстраций - 39 (рисунки, схемы, графики), таблиц - 15, список литературы - 83 наименований.
НА ЗАЩИТУ ВЫНОСЯТСЯ
1. Структурная схемотехника и математическая модель нового маятникового чувствительного элемента имеющего компенсацию от влияния температурных напряжений.
2. Оригинальный микросистемный емкостный преобразователь перемещений с тестированием акселерометра, меньших габаритов при той же стоимости.
3. Математическая модель микросистемного акселерометра, позволяющая оценить его параметры еще на стадиях НИР и ОКР.
4.Соотношения для выбора оптимальных параметров микросистемного акселерометра по критерию минимума погрешностей измерений, которые позволяют для акселерометров прямого измерения получить точность, эквивалентную точности компенсационного акселерометра с электростатической обратной связью.
5. Структурные схемы установок для экспериментальных исследований статических и динамических характеристик микросистемных акселерометров и результаты экспериментальных исследований.
6. Соотношения для теоретических расчетов: жесткостей упругих подвесов, абсолютных коэффициентов газодинамического демпфирования, упругих подвесов на продольную устойчивость и элементов электрической схемы.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность выбранной темы и на основе анализа современного состояния интегральных датчиков первичной информации сформулированы цель и задачи исследований.
Первая глава диссертации посвящена обзору современного состояния микросистемных акселерометров, в которой сделан сравнительный анализ их характеристик. Рассмотрены как отечественные, так и зарубежные решения и выявлены положительные и отрицательные стороны конструкций с точки зрения получения максимальной точности. В результате анализа предпочтение отдано микросистемному акселерометру с местной обратной связью.
Вторая глава содержит теоретическое обоснование построения микромеханического чувствительного элемента и электрической схемы. Проведена оценка числа степеней свободы маятникового подвижного узла на основе анализа жесткостей упругих подвесов в различных направлениях. Из анализа следует, что угловое движение маятника относительно оси y (рис. 1) и линейные относительно осей x и y отсутствуют, так как их жесткости являются бесконечно большими. Сравнивая угловые жесткости относительно осей x и z, можно заключить, что угловая жесткость относительно оси z превосходит угловую жесткость относительно оси x на множитель . Численно это составляет, как минимум, пять порядков, что при допущении одинаковых усилий, действующих по сравниваемым осям, позволяет пренебречь бесконечно малым угловым перемещением относительно оси z.
Осевые жесткости подвеса вдоль положительного и отрицательного направления оси z в общем случае не одинаковы. В положительном направлении подвес работает на растяжение, а в отрицательном - на сжатие. При этом при больших нагрузках в отрицательном направлении необходимо проводить проверку подвеса на продольную устойчивость. Здесь следует отметить, что для подвесов с кривизной по ширине и толщине сжатию подвергается короткий участок в минимальном сечении подвеса и при сохранении его характеристик в пределах упругости подвес всегда является устойчивым.
Таким образом, рассмотренная конструкция маятникового ЧЭ интегрального акселерометра, при введенных допущениях, имеет две степени свободы: угловое перемещение относительно оси x и линейное перемещение вдоль оси y. Соответственно микромеханический подвижный узел имеет передаточную функцию четвертого порядка. При использовании для анализа динамики уравнения Лагранжа второго рода, передаточная функция подвижного узла была определена в виде:
, (1)
где коэффициенты передаточной функции выражаются через параметры подвижного узла:
(2)
где - момент инерции маятника относительно оси z; m - масса маятника; Kд и Kду - осевой и угловой абсолютные коэффициенты демпфирования; G и Gу - осевая и угловая жесткости упругого подвеса; lц - расстояние от центра тяжести до оси качания маятника.
Крутизну статической характеристики чувствительного элемента определим из (1) с учетом (2) при :
(3)
Для обработки перемещений маятника разработан специализированный электрический преобразователь. В качестве исходных предпосылок при разработке преобразователя были приняты следующие требования: 1 - обеспечение линейности статической характеристики во всем диапазоне измерений; 2 – в преобразователе должно быть полностью исключено влияние диэлектрической проницаемости среды, заполняющей пространство между измерительными электродами преобразователя; 3 - в передаточные соотношения величины резисторов должны входить в виде отношений; 4 - минимум температурной ошибки при изменении параметров; 5 - достаточная фильтрация выходного сигнала от несущей частоты генератора, питающего емкостный мост; 6 - исключение тяжения между подвижным и неподвижным электродами емкостного моста; 7 - в динамическом отношении преобразователь перемещений должен представлять собой, без учета фильтра нижних частот, безынерционное звено; 8 - независимость крутизны статической характеристики и нулевого сигнала преобразователя от частоты питающего генератора и сведение к минимуму ошибки от нестабильности источников питания.
Наиболее полно сформулированным требованиям отвечает схема, представленная на рис. 2, а. Для достижения необходимых характеристик по статической и динамической точности в схеме осуществлялась проработка нескольких вариантов решений того или иного узла и выбор оптимальных. Схема содержит в своем составе: дифференциальную цепь измерительных емкостей C1 - C2; устройство переключения опорных напряжений Кл1-Кл4; усилитель на ОУ1, синхронный (демодулятор) детектор (Кл5 и Кл8); генератор тактовой частоты (рис. 2, b) на логическом элементе типа триггера Шмидта; источники опорных напряжений и фильтр нижних частот (ФНЧ) на ОУ2. Электрическая схема описывается следующей передаточной функцией:
(4)
где - коэффициент крутизны статической характеристики преобразователя;
- постоянная времени фильтра;
Полная передаточная функция микросистемного акселерометра состоит из произведения передаточных функций механической и электрической частей:
(5)
Коэффициенты передаточной функции находятся через параметры подвижного узла:
.
Коэффициент наклона статической характеристики микросистемного акселерометра с местной единичной обратной связью получен из передаточной функции (5) в следующем виде:
. (6)
В качестве альтернативной схемы были разработаны и исследованы схемы с силовой электростатической отработкой и с широтно-импульсной модуляцией (ШИМ). После сравнения предпочтение отдано схеме по рис. 2.
В работе были исследованы ЧЭ с внутренним и внешним креплением несущей пластины. Из исследований установлено, что внутреннее крепление по одной точке предпочтительнее с точки зрения меньшего влияния контактных напряжений, передаваемых от корпуса.
Основным параметром подвеса является жесткость, определяемая для случая изгибных деформаций отношением приложенного момента сил к угловому перемещению. При выборе кристаллографической плоскости с изотропными свойствами и допущении, что для него применимы все известные методы из теории упругости, в работе была установлена зависимость от геометрических размеров и модуля упругости для жесткости упругого подвеса с криволинейными боковыми обводами и эллиптическим поперечным сечением: