Совершенствование состава и структуры сплавов циркония в обеспечение работоспособности твэлов, твс и труб давления активных зон водоохлаждаемых реакторов с увели
На правах рукописи
МАРКЕЛОВ Владимир Андреевич
СОВЕРШЕНСТВОВАНИЕ СОСТАВА И СТРУКТУРЫ СПЛАВОВ ЦИРКОНИЯ В ОБЕСПЕЧЕНИЕ РАБОТОСПОСОБНОСТИ ТВЭЛОВ, ТВС И ТРУБ ДАВЛЕНИЯ АКТИВНЫХ ЗОН ВОДООХЛАЖДАЕМЫХ РЕАКТОРОВ С УВЕЛИЧЕННЫМ РЕСУРСОМ
И ВЫГОРАНИЕМ ТОПЛИВА
Специальность – 05.16.01
«Металловедение и термическая обработка металлов и сплавов»
Автореферат
диссертации на соискание учёной степени
доктора технических наук
Автор
Москва - 2010
Работа выполнена в ОАО «ВНИИНМ»
«Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара»
Официальные оппоненты: | Доктор технических наук, профессор Кудря Александр Викторович (НИТУ «МИСиС») |
Доктор технических наук, профессор Рязанцев Евгений Петрович (РНЦ «КИ») | |
Доктор технических наук, Ватулин Александр Викторович (ОАО «ВНИИНМ») |
Ведущая организация: Национальный исследовательский ядерный университет
«МИФИ»
Защита состоится «21» октября 2010 г. в 1530 ч на заседании Диссертационного совета Д212.132.08 при Национальном Исследовательском Технологическом Университете «МИСиС» по адресу: 119991, Москва, Ленинский проспект, д.4, в аудитории Б-2
С диссертацией можно ознакомиться в библиотеке НИТУ «МИСиС»
Автореферат разослан «____» _______ 2010 г.
Учёный секретарь диссертационного совета Д212.132.08
доктор физ. - мат. наук С.И. Мухин
Список сокращений и условных наименований
АЭС – атомная электрическая станция;
АЗ – активная зона;
ВВЭР – водо-водяной энергетический реактор (корпусного типа);
PWR – Pressurized Water Reactor (реактор с водой под давлением корпусного типа);
BWR – Boiling Water Reactor (реактор с кипящей водой корпусного типа);
РБМК – реактор большой мощности кипящий (канального типа);
CANDU – CANada Deuterium Uranium (реактор канального типа);
твэл – тепловыделяющий элемент;
ТВС – тепловыделяющая сборка (кассета);
НК – направляющий канал ТВС;
ЦТ – центральная труба ТВС;
ДР – дистанционирующая решётка ТВС;
ТК – топливный (технологический) канал;
Труба давления в реакторе CANDU соответствует трубе ТК в реакторе РБМК;
ТК СУЗ – технологический канал системы управления защитой;
КИУМ – коэффициент использования установленной мощности;
ВХР – водно-химический режим;
PCI – Pellet Cladding Interaction (взаимодействие топлива с оболочкой, аналогично коррозионному растрескиванию под напряжением -КРН);
PCMI – Pellet Cladding Mechanical Interaction (механическое взаимодействие топлива с оболочкой);
LOCA – loss-of-coolant accident - авария с потерей теплоносителя;
ЛГО – локальная глубина окисления;
RIA – reactivity-initiation accident - реактивностная авария;
ЗГР – замедленное гидридное растрескивание;
МАГАТЭ – международное агентство по атомной энергии;
АКОРТ – аппарат контроля относительного роста трещины;
АССД – автоматизированная система сбора данных;
ТУ – технические условия
НИР – научно-исследовательская работа
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность
Стратегией развития атомной энергетики России доминирующая роль отводится водоохлаждаемым энергетическим реакторам на тепловых нейтронах, на которых базируется в настоящее время атомная энергетика во всём мире и в нашей стране. Рентабельность и конкурентоспособность водоохлаждаемых реакторов зависит от эффективности использования топлива, определяемой глубиной достигнутого выгорания и эксплуатационной гибкостью топливного цикла. К числу наиболее важных факторов, определяющих работоспособность и безопасность твэлов и ТВС при высоких выгораниях, относится уровень функциональных свойств циркониевых сплавов, из которых эти и другие конструктивные элементы АЗ изготавливаются.
В реакторах ВВЭР-1000 существенной проблемой является прогиб бесчехловых ТВС из-за недостаточной жёсткости конструкции, достигающий в ТВС предыдущих поколений 30 мм, что приводит к затруднению аварийного срабатывания органов регулирования СУЗ, замедляет транспортно-технологические операции при перегрузке кассет и снижает технико-экономические показатели эксплуатации реактора. Для решения проблемы искривления АЗ разработаны ТВС нового поколения (ТВСА и ТВС-2), с использованием в качестве материала силовых элементов каркаса радиационно-стойкого сплава Э635, что потребовало оптимизации его состава и структурно-фазового состояния. Следующий шаг предусматривает внедрение высокоэффективных топливных циклов (18-24 месяца между перегрузками, увеличение загрузки урана) для повышения КИУМ реактора до 107 % NНОМ на действующих АЭС с реакторами ВВЭР и перспективных энергоблоках проекта АЭС-2006. Использование таких циклов сопровождается маневрированием мощностью 100-20-100 % до 2-х раз в сутки, увеличением длительности эксплуатации и выгорания топлива (от 42 до 80 МВт·сут/кг U по твэлу), повышением температуры оболочки твэла и увеличением паросодержания в теплоносителе. Более жёсткие условия эксплуатации предъявляют повышенные требования к функциональным свойствам циркониевых сплавов и вызывают необходимость их совершенствования применительно к оболочкам твэлов и комплектующим каркаса новых ТВС энергоблоков ВВЭР и АЭС-2006.
За рубежом в наибольшей степени развиваются реакторы PWR, по концепции близкие к ВВЭР, в связи с чем, ГК «Росатом» и ОАО «ТВЭЛ» поставили задачу выхода на рынок этих реакторов с отечественной разработкой ТВС-КВАДРАТ. Решение задачи невозможно без использования в ТВС-КВАДРАТ конкурентоспособных сплавов циркония. Для этого российские сплавы по функциональным свойствам в условиях PWR должны не уступать своим зарубежным аналогам и обеспечить проектные параметры эксплуатации твэлов и ТВС.
Развитие атомной энергетики связывается также с продлением ресурса действующих реакторов канального типа - РБМК и CANDU. При этом за рубежом разрабатываются более энергоёмкие и конкурентоспособные ядерные установки этого типа. Важнейшими элементами конструкции канальных реакторов являются трубы давления, от целостности которых зависит нормальная эксплуатация и безопасность АЭС. Проектный ресурс канальных реакторов составляет 30 лет, однако трубы давления из сплавов циркония эксплуатируют меньше проектного срока. Наблюдались случаи разгерметизации труб ТК и ТК СУЗ в реакторах РБМК. В ещё большей степени эта проблема характерна для труб давления CANDU. Поэтому задача совершенствования материала труб давления для канальных реакторов является исключительно важной.
Функциональные свойства сплавов циркония определяются их составом и структурой. В АЗ реактора циркониевые компоненты претерпевают существенные структурно-фазовые изменения, приводящие к изменению механических свойств, коррозии, наводороживанию, формоизменению (радиационные ползучесть и рост) и взаимодействию с продуктами деления топлива. Знание закономерностей таких изменений в зависимости от состава и исходной структуры сплавов циркония облегчает выбор материала для конкретного применения в качестве оболочки твэла, трубы давления или деталей каркаса ТВС. При этом необходимо максимально использовать потенциал существующих и хорошо зарекомендовавших себя длительным опытом эксплуатации сплавов циркония, путём оптимизации и модернизации их легирующего, шихтового и примесного состава.
Использование в полном объёме вышеуказанных возможностей в совершенствовании сплавов циркония и изделий из них для повышения работоспособности и безопасности твэлов, ТВС и труб давления водоохлаждаемых реакторов в стратегии инновационного развития атомной энергетики России и определяет актуальность настоящей работы.
Актуальность диссертационной работы подтверждается выполнением её в рамках научных договоров и контрактов ОАО «ВНИИНМ», финансируемых ГК «Росатом» и ОАО «ТВЭЛ» по направлениям, определённым ФЦП «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года», ФЦП «Топливо и энергия» - «Программа развития атомной энергетики РФ на 1998-2005 г.г. и на период до 2010 г.», отраслевой Программой «Эффективное топливоиспользование на АЭС в период 2008-2010 годы и на перспективу до 2015 года» и корпоративной Программой «Обеспечение потребностей атомной энергетики и промышленности конкурентоспособными циркониевыми материалами и изделиями», рассчитанной на 2009-2015 годы, а также в рамках международного сотрудничества по проекту МНТЦ №1635р.
Цель работы
Обеспечение работоспособности и безопасности твэлов, ТВС и труб давления в активных зонах водоохлаждаемых энергетических реакторов типа ВВЭР, PWR, РБМК и CANDU с увеличенным ресурсом и выгоранием топлива путём совершенствования состава и структурно-фазового состояния сплавов циркония, включая разработку новых модификаций сплавов и технологических схем изготовления изделий с высоким уровнем эксплуатационных свойств.
Основные задачи:
1) Определение направлений совершенствования состава и структуры сплавов циркония в обеспечение требований к функциональным свойствам, предъявляемых к оболочкам твэлов и силовым элементам каркаса ТВС реакторов ВВЭР и PWR, и трубам давления реакторов РБМК и CANDU, применительно к увеличенным ресурсам и выгораниям топлива, и для конкурентоспособности этих изделий на зарубежном рынке.
2) Совершенствование состава, шихтовой циркониевой основы и структуры сплава Э110, повышение требований к геометрическим размерам и поверхностной обработке оболочечных труб для обеспечения безопасной эксплуатации твэлов с увеличенной загрузкой топлива в перспективных топливных циклах реакторов ВВЭР и в условиях ВХР реактора PWR.
3) Исследование влияния легирующих элементов и структурных факторов на сопротивление разрушению, радиационную стойкость и коррозию сплава Э635, и определение путей и способов управления этими характеристиками для применения сплава в качестве материала оболочек твэлов, труб давления и силовых элементов каркасов ТВСА и ТВС-2 для исключения искривления ТВС нового поколения ВВЭР-1000.
4) Выявление основных факторов, определяющих вязкость разрушения и сопротивление ЗГР сплавов циркония. Разработка технологических схем изготовления усовершенствованных труб давления с повышенной стойкостью к ЗГР для реактора CANDU и труб ТК и ТК СУЗ со стабильной структурой и свойствами для реактора РБМК.
Научная новизна работы:
1. Установлены закономерности, дополняющие представления о влиянии кислорода и железа на механические свойства, ползучесть и коррозионную стойкость сплава Э110 на основе губчатого и электролитического циркония.
2. Обосновано и экспериментально подтверждено направление совершенствования сплава Э110 для оболочек твэлов водоохлаждаемых реакторов путём легирования кислородом и железом до 1500 ppm каждого в обеспечение конкурентных характеристик оболочек твэлов по радиационному формоизменению.
3. Впервые определены закономерности поведения при высокотемпературном окислении иодидного циркония как основы сплава Э110 и экспериментально обосновано его применение в качестве шихтовой составляющей при выплавке сплавов на губчатом цирконии для труб оболочек твэлов с требуемой пластичностью в проектных авариях типа LOCA.
4. Впервые выявлены два типа выделений второй фазы в сплаве Э635 – частицы фазы Лавеса - Zr(Nb,Fe)2 и Т-фазы - (Zr,Nb)2Fe, количественное соотношение, размер, и распределение в матрице которых зависят от содержания железа и ниобия в сплаве и режимов его деформационной и термической обработки, и которые, наряду с рекристаллизацией, определяют вязкость разрушения, технологическую пластичность и коррозионную стойкость сплава.
5. Впервые показаны характерные особенности эволюции структурно-фазового состояния сплава Э635 под облучением при температурах 285-355 С, связанные с диффузионной подвижностью железа, и обусловливающие повышенное упрочнение и сопротивление сплава радиационному формоизменению. В зависимости от флюенса и температуры железо диффундирует из частиц фазы Лавеса в матрицу, способствуя развитию процессов рекристаллизации сплава и сдерживанию образования дислокационных петель c -компонентой. Одновременно с этим в объёме материала происходит выделение вторичных радиационно-индуцированных мелкодисперсных частиц.
6. Выделены основные факторы - текстура и прочность, определяющие вязкость разрушения и сопротивление ЗГР сплавов циркония, и установлены основные закономерности и количественные взаимосвязи между ними. Определены температурные зависимости и энергии активации скорости ЗГР для сплава Zr-2,5%Nb с различным структурно-фазовым состоянием и прочностью.
7. Впервые при испытаниях на вязкость разрушения и ЗГР материала труб давления и оболочек твэлов из сплавов циркония предложен способ регистрации роста трещины методом падения потенциала с использованием переменного электрического тока сети и сформулированы принципы создания на основе этого метода измерительной аппаратуры.
Практическая ценность и реализация результатов работы:
1. Усовершенствованные составы и структурные состояния сплавов циркония использованы в конструкциях твэлов и ТВС нового поколения для высокоэффективных топливных циклов с глубиной выгорания на уровне 70-80 МВт·сут/кгU в действующих реакторах ВВЭР-1000 и перспективных энергоблоках АЭС-2006, а также для ТВС-КВАДРАТ реактора PWR.
2. Внедрены в серийное производство и эксплуатацию сплав Э110 с оптимизированным содержанием кислорода (600-990 ppm) и железа (250-700 ppm) и оболочечные трубы из этого сплава со шлифованной наружной поверхностью и повышенными требованиями к геометрическим размерам по ТУ 001.392-2006 для штатных твэлов и твэлов ВВЭР-1000 с увеличенной загрузкой топлива, что позволило:
- разработать высокоэффективные топливные циклы длительностью до 18 месяцев между перегрузками;
- стабилизировать проектный запас оболочек твэлов по сопротивлению формоизменению;
- повысить технико-экономические показатели и уровень экологии (ограничение применения травильных ванн) в производстве труб для оболочек твэлов;
- повысить эффективность (снижение усилий) сборки кассет ВВЭР-1000.
Экономический эффект от внедрения в производство оболочечных труб из сплава Э110 опт на основе губки по ТУ 001.392-2006 составил 29,87 млн. рублей в расчёте на блок реактора ВВЭР-1000 для АЭС «Темелин».
3. Рекомендовано и внедрено в производство применение иодидного циркония в качестве шихтовой составляющей при выплавке сплава Э110 опт на основе губки для оболочек твэлов в обеспечение требуемой пластичности при проектных авариях типа LOCA.
4. Результаты по оптимизации состава и структурно-фазового состояния сплава Э635 использованы при обосновании, постановке на производство и внедрении этого сплава в качестве материала силовых элементов каркаса ТВС нового поколения ВВЭР-1000. В сочетании с другими конструкторскими решениями это обеспечило устойчивость к формоизменению и геометрическую стабильность новых ТВС, и позволило ускорить транспортно-технологические операции при перегрузке кассет, что, в целом, существенно повысило технико-экономические показатели эксплуатации реактора.
Разработка и внедрение усовершенствованных техпроцессов изготовления центральных труб и труб для НК ТВС ВВЭР-1000, а также полос для уголков жёсткости каркаса ТВСА из сплава Э635 позволили существенно увеличить выход годной продукции и получить экономический эффект на конец 2009 г. в размере ~ 480 млн. рублей. При этом исключены случаи растрескивания уголков в производстве каркасов ТВСА и повышена их эксплуатационная надёжность.
5. Разработаны технологические схемы получения труб давления CANDU из сплавов Zr-2,5%Nb и Э635 с повышенным сопротивлением ЗГР в обеспечение их работоспособности на проектный ресурс реактора. В ОАО «ЧМЗ» изготовлены усовершенствованные трубы полномасштабного размера по требованиям зарубежной спецификации и показана принципиальная возможность постановки на серийное производство изделий такой номенклатуры.
Разработанная технология применима для изготовления усовершенствованных труб ТК реактора РБМК из сплава Э125 с получением изделий со стабильной структурой и однородными свойствами.
Для стабилизации механических свойств и повышения трещиностойкости штатных труб ТК и труб каналов СУЗ реактора РБМК разработан и рекомендован к внедрению способ их конечной обработки, обеспечивающий существенное повышение и выравнивание степени рекристаллизации материала.
6. Создан и применяется в ОАО «ВНИИНМ» при испытаниях на вязкость разрушения и ЗГР образцов изделий из сплавов циркония измерительный программно-аппаратный комплекс «АКОРТ-АССД», включающий «Аппарат контроля относительного размера трещины» методом падения потенциала с использованием переменного электрического тока сети и прибор «Автоматизированной системы сбора данных».
На защиту выносятся:
1. Результаты обоснования и внедрения в серийное производство и эксплуатацию сплава Э110 на штатной и губчатой основах с оптимизированным содержанием кислорода и железа и оболочечных труб из него, изготовленных по новым ТУ 001.392-2006 на трубы с повышенными требованиями к допускам на геометрические размеры и шлифованной наружной поверхностью, для штатных твэлов и твэлов ВВЭР-1000 с увеличенной загрузкой топлива.
2. Результаты исследований по высокотемпературному окислению в обоснование применения иодидного циркония в качестве шихтовой составляющей при выплавке слитков сплава Э110 на основе губчатого циркония для труб оболочек твэлов с требуемой пластичностью при проектных авариях типа LOCA.
3. Результаты исследований, дополняющие обоснование состава сплава Э110М, для промышленного освоения и применения в качестве материала оболочек твэлов ВВЭР-1000 и ТВС-КВАДРАТ реактора PWR.
4. Комплекс результатов исследований по взаимосвязи состава, структурно-фазового состояния, режимов деформационно-термической обработки и свойств сплава Э635 до и после облучения, позволивший:
- выявить структурные факторы сплава, определяющие его технологические и эксплуатационные свойства;