Формирование остаточных напряжений при нарезании резьбы с наложением ультразвуковых колебаний
На правах рукописи
РОМАШКИНА Оксана Викторовна
ФОРМИРОВАНИЕ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ ПРИ НАРЕЗАНИИ РЕЗЬБЫ С НАЛОЖЕНИЕМ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ
05.02.08 – Технология машиностроения
01.02.04 – Механика деформируемого твёрдого тела
АВТОРЕФЕРАТ
диссертации на соискание учёной степени
кандидата технических наук
Самара – 2011
Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Самарский государственный технический университет» на кафедре «Инструментальные системы и сервис автомобилей»
Научный руководитель: кандидат технических наук, доцент
Головкин Валерий Викторович
Научный консультант: доктор физико-математических наук, профессор
Радченко Владимир Павлович
Официальные оппоненты: доктор технических наук, профессор
Дёмин Феликс Ильич
кандидат физико-математических наук, доцент
Кичаев Пётр Евгеньевич
Ведущая организация: Государственный научно-производственный ракетно-космический центр «ЦСКБ-Прогресс»
Защита состоится «_16__» ___декабря____ 2011 г. в _1500_ часов на заседании диссертационного совета Д 212.217.02 в ФГБОУ ВПО «Самарский государственный технический университет» по адресу: г. Самара, ул. Галактионовская 141, корп. № 6, ауд. 33.
Отзыв на автореферат, заверенной гербовой печатью, просим направлять по адресу: Россия, 443100, г. Самара, ул. Молодогвардейская, 244, Главный корпус, ученому секретарю диссертационного совета Д 212.217.02.
С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Самарский государственный технический университет».
Автореферат разослан «___»__ноября__ 2011 г.
Учёный секретарь
диссертационного совета,
доктор технических наук, профессор А.Ф. Денисенко
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы
Технический прогресс в машиностроении во многом определяется технологией изготовления различных деталей и сборочных единиц изделий. При этом в технологическом цикле изготовления деталей доминирующая роль принадлежит механической обработке. Одним из направлений повышения эффективности механической обработки является применение вынужденных ультразвуковых колебаний. Применение ультразвука позволяет повысить производительность процесса, точность изготовления деталей, а следовательно, качество и надёжность изделий.
В настоящее время при сборке различных узлов и агрегатов машин применяются резьбовые соединения, от эксплуатационных характеристик которых зависит работоспособность всей сборочной единицы. Поэтому в ряде случаев к ответственным резьбовым деталям предъявляют повышенные требования. Особенно эффективным оказалось применение ультразвука при нарезании резьб в труднообрабатываемых и высокопрочных материалах, что позволило повысить производительность труда, стойкость резьбообразующего инструмента и изменить качественные характеристики поверхностного слоя. Вместе с тем, несмотря на широкое использование ультразвуковых колебаний при нарезании резьб, в настоящее время практически отсутствуют исследования по изучению влияния различных параметров ультразвукового воздействия, в частности направления вынужденных ультразвуковых колебаний, на формирование остаточных напряжений в резьбовых деталях, которые оказывают значительное влияние на работоспособность при эксплуатации в условиях переменных нагрузок.
В связи с изложенным тема диссертационной работы, посвящённой формированию остаточных напряжений в поверхностном слое резьбовых деталей, изготовленных из труднообрабатываемых материалов с применением вынужденных ультразвуковых колебаний, является актуальной.
Представленные в диссертационной работе исследования проводились в рамках проекта Министерства образования и науки Российской Федерации по аналитической ведомственной целевой программе «Развитие научного потенциала высшей школы» (Рег. №2.1.1/3397).
Цель работы: формирование сжимающих остаточных напряжений при нарезании резьбы в труднообрабатываемых и высокопрочных материалах с наложением ультразвуковых колебаний.
Для достижения поставленной цели сформулированы следующие задачи исследования:
1. Провести теоретико-экспериментальные исследования по изучению влияния направления вынужденных ультразвуковых колебаний на шероховатость, точность и остаточные напряжения при нарезании резьбы.
2. Разработать математическую модель и на её основе методику расчёта для определения полного (трёхмерного) распределения полей остаточных напряжений во впадине резьбы.
3. Исследовать влияние остаточных напряжений, полученных при ультразвуковом резьбонарезании, на предельную амплитуду цикла (нагружения) резьбовых деталей.
4. Разработать научно обоснованные рекомендации по эффективному использованию ультразвуковых колебаний различного направления при нарезании резьбы в труднообрабатываемых и высокопрочных материалах.
Методы исследования. Реализация поставленной цели осуществлялась теоретическими и экспериментальными методами. Теоретические исследования проведены на базе фундаментальных разработок в области технологии машиностроения, теории формирования поверхностного слоя при механической обработке, механики деформируемого твёрдого тела и математического моделирования напряжённо-деформированного состояния. Экспериментальные исследования проводились с использованием специальных апробированных методик, а также с применением оригинальных ультразвуковых устройств.
Достоверность полученных результатов исследования подтверждается корректным использованием законов механики деформируемого твёрдого тела, соответствием теоретических и экспериментальных данных, а также применением статистической обработки результатов наблюдений по ГОСТ 8.207-76.
Научная новизна работы
1. На основании теоретико-экспериментальных исследований установлено влияние тангенциальных, радиальных и осевых ультразвуковых колебаний на точность, шероховатость резьбы и формирование остаточных напряжений в её впадинах у деталей из титановых сплавов ВТ3-1, ВТ9, ВТ16, нержавеющей (12Х18Н9Т) и высокопрочной (30ХГСА) сталей.
2. Разработана математическая модель для определения напряжённо-деформированного состояния поверхностного слоя во впадинах резьб, нарезанных при различных видах ультразвуковых колебаний, с целью дальнейшего прогнозирования работоспособности резьбовых деталей по предельной амплитуде цикла.
3. Установлена качественная картина и получены количественные характеристики влияния направления ультразвуковых колебаний на предельную амплитуду цикла резьбовых деталей.
Практическая ценность и реализация результатов работы
1. Определены оптимальные параметры процесса нарезания наружных резьб резцами и круглыми плашками с применением ультразвука и разработаны научно обоснованные рекомендации по эффективному использованию способа нарезания наружных резьб с вынужденными ультразвуковыми колебаниями.
2. Разработана специальная методика, позволяющая определить напряжённо-
деформированное состояние в поверхностном слое впадин резьбы.
3. На основании проведённых исследований разработан новый способ нарезания резьбы с применением ультразвуковых колебаний, позволяющий повысить предельную амплитуду цикла напряжений за счёт формирования во впадинах резьбы сжимающих остаточных напряжений (патент РФ № 2404031).
4. Опытно-промышленная проверка предложенного способа нарезания резьбы, проведённая на предприятии ОАО «Волгабурмаш», показала повышение ресурса работы резьбовых деталей в 1,5 раза. Результаты данной работы внедрены в научно-исследовательскую деятельность Самарского государственного технического университета, в учебный процесс и используются при проведении лабораторных работ и выполнении выпускных квалификационных работ по специальности 151002 «Металлообрабатывающие станки и комплексы».
На защиту выносятся:
- Способ нарезания резьбы с применением ультразвуковых колебаний, позволяющий повысить работоспособность по предельной амплитуде цикла (нагружения) резьбовых деталей за счёт формирования во впадинах резьбы сжимающих остаточных напряжений.
2. Математическая модель и разработанная на её основе методика расчёта, позволяющая определить напряжённо-деформированное состояние поверхностного слоя впадин резьбы.
3. Результаты экспериментального исследования по изучению влияния направления вынужденных ультразвуковых колебаний на формирование осевых остаточных напряжений во впадине резьбы при обработке образцов из титановых сплавов ВТ3-1, ВТ9, ВТ16, нержавеющей стали 12Х18Н9Т и высокопрочной стали 30ХГСА.
4. Результаты теоретико-экспериментальных исследований напряжённо-деформированного состояния в поверхностном слое впадин резьбы.
5. Результаты исследования влияния остаточных напряжений, полученных при обработке с различными видами ультразвуковых колебаний, на предельную амплитуду цикла (нагружения) резьбовых деталей.
Апробация работы
Основные положения и результаты работы доложены и обсуждены на 6 научно-технических конференциях, а именно: на Всероссийской научно-технической конференции с международным участием «Высокие технологии в машиностроении» (г. Самара, Самарский гос. техн. ун-т, 2007-2008 гг.); на VI Международной научно-технической конференции «Проблемы качества машин и их конкурентоспособности» (г. Брянск, Брянский гос. техн. ун-т, 2008 г.); на V Всероссийской научной конференции с международным участием «Математическое моделирование и краевые задачи» (г. Самара, Самарский гос. техн. ун-т, 2008 г.); на Всероссийской научно-технической конференции с международным участием «Машиностроительные технологии» (г. Москва, Московский гос. техн. ун-т им. Баумана, 2008 г.); на Международной научно-технической конференции «Прочность материалов и элементов конструкций» (г. Киев, Украина, Институт проблем прочности им. Г.С. Писаренко НАН Украины, 2010 г.).
Публикации
Основное содержание диссертации отражено в 15 научных публикациях, из них: 6 статей в изданиях, рекомендованных ВАК РФ для публикаций материалов докторских и кандидатских диссертаций; 6 статей в сборниках научных трудов; 2 тезиса докладов в материалах научно-технических конференций; патент РФ № 2404031.
Структура и объём работы
Диссертация состоит из введения, пяти глав, выводов по каждой главе и общих выводов, списка использованной литературы из 114 наименований и приложений.
Материал изложен на 109 страницах, содержит 56 рисунков и 1 таблицу. Общий объём работы – 121 страница машинописного текста.
Содержание работы
Во введении обоснована актуальность темы диссертационной работы, определена цель, представлены научная новизна, практическая значимость, основные научные положения и результаты, выносимые на защиту.
Первая глава диссертационной работы посвящена обзору и анализу методов механической лезвийной обработки с наложением на инструмент вынужденных ультразвуковых колебаний.
Отмечено, что существенный вклад в развитие и исследование процесса нарезания резьбы с применением ультразвуковых колебаний внесли В.А. Волосатов, В.В. Головкин, А.А. Горбунов, В.Н. Захаров, Б.А. Кравченко, Д. Кумабэ, А.Н. Марков, В.Д. Мартынов, Э.Н. Михайлюк, М.С. Нерубай, В.Н. Подураев, В.М. Салтанов, Ю.Н. Сулье, А.Г. Турков, Н.Н. Черня, Б.Л. Штриков и другие учёные. В работах этих авторов представлены результаты исследования влияния вынужденных ультразвуковых колебаний на силы резания и крутящий момент, процесс стружкообразования, температуру в зоне резания, стойкость инструмента, шероховатость обработанной поверхности и точность нарезаемых резьб. В исследованиях, посвящённых изучению влияния различных по направлению вынужденных ультразвуковых колебаний на формирование остаточных напряжений в поверхностном слое при различных видах механической обработки, отмечено, что направление ультразвуковых колебаний в значительной степени изменяет распределение и величину остаточных напряжений. Вместе с тем в литературе практически отсутствуют данные о влиянии направления вынужденных ультразвуковых колебаний на формирование остаточных напряжений в поверхностном слое резьбовых деталей, а также о влиянии этого параметра на предельную амплитуду цикла.
На основании проведённого анализа поставлена цель работы и определены задачи исследования.
Во второй главе изучены особенности процесса нарезания резьбы с различными по направлению ультразвуковыми колебаниями и представлено оборудование, при помощи которого проводились исследования. Также приведены методики и результаты экспериментальных исследований по влиянию различных видов ультразвуковых колебаний на точность нарезаемых резьб, шероховатость обработанной поверхности и остаточные напряжения.
Нарезание наружных резьб осуществлялось при помощи специальных ультразвуковых резьбонарезных устройств, разработанных в Самарском государственном техническом университете доцентами В.В. Головкиным и А.Г. Турковым, на образцах из труднообрабатываемых материалов, а именно: титановых сплавов ВТ3-1, ВТ9, ВТ16, нержавеющей стали 12Х18Н9Т и высокопрочной стали 30ХГСА. Из этих материалов изготавливают ответственные резьбовые детали, работающие в условиях переменных нагрузок, в том числе детали летательных аппаратов и их двигателей.
При проведении экспериментальных исследований были выбраны резьбы М5, М6, М8, которые являются наиболее распространёнными и обладают значительно меньшими характеристиками работоспособности.
При нарезании резьб изменялось только направление ультразвуковых колебаний, так как многочисленными исследованиями, проведенными А.И. Марковым, В.Н. Подураевым, М.С. Нерубаем и другими учеными, установлено, что для процесса резьбонарезания, который характеризуется малыми значениями скорости резания и глубины срезаемого слоя, оптимальная амплитуда колебаний составляет 5 мкм при обработке с частотой ультразвуковых колебаний 20±1 кГц.
Нарезание резьбы с осевыми ультразвуковыми колебаниями проводилось на сверлильном станке 2А135 (рис. 1). При этом обрабатываемые образцы закреплялись в цанге ультразвукового устройства, а нарезание резьбы осуществлялось круглыми плашками, установленными в специальной оправке на столе станка. Например, нарезание резьбы М8 осуществлялось при скорости резания V=1,2 м/мин по методу «самозатягивания», так как в данном ультразвуковом устройстве имеется возможность телескопического выдвижения пьезокерамического преобразователя с закрепленным образцом и компенсации несоосности резьбонарезного инструмента и обрабатываемой детали. Обработка осуществлялась с амплитудой ультразвуковых колебаний = 5 мкм и частотой f = 20 ±1 кГц.
Нарезание резьбы с радиальными и тангенциальными ультразвуковыми колебаниями проводилось резьбовым резцом, закреплённым в концентраторе ультразвукового устройства на токарном станке 1К62 (рис. 2). Для обработки с тангенциальными колебаниями применялся специальный резьбовой резец, при этом ультразвуковое устройство смещалось по высоте, чем обеспечивалось изменение колебаний с радиальных на тангенциальные. Нарезание осуществлялось в несколько переходов с
глубиной резания t = 0,2 мм при последнем проходе и скоростью резания V = 0,8-1,2 м/мин. Амплитуда ультразвуковых колебаний составляла = 5 мкм, а частота колебаний f = 20±1 кГц. Для проведения сопоставительного анализа осуществлялось нарезание резьб без ультразвуковых колебаний.
Одним из основных требований, предъявляемых к резьбовым деталям, является точность обработки, поэтому были проведены исследования влияния ультразвуковых колебаний различного направления на точность нарезаемой резьбы. Оценка точности нарезаемой резьбы проводилась путём измерения её среднего диаметра оптическим методом с помощью большого инструментального микроскопа БМИ-1ц. В результате проведённых экспериментов установлено, что при нарезании резьбы М86g на образцах из титанового сплава ВТ16 разброс значений среднего диаметра составляет: при обработке с тангенциальными колебаниями – 78 мкм, осевыми – 86 мкм, радиальными – 98 мкм, а при обычном резании – 105 мкм. Таким образом, изучение влияния направления ультразвуковых колебаний на точность нарезаемых резьб показало, что имеет место повышение точности в пределах одной степени.
Также было изучено влияние направления ультразвуковых колебаний на шероховатость обработанной поверхности. Измерение параметра шероховатости Rz проводилось методом светового сечения на боковой поверхности профиля резьбы М8 на образцах из титанового сплава ВТ16 с помощью двойного микроскопа МИС-11. Поскольку длина участка измерения была меньше стандартных базовых длин (0,8; 2,5 мм) по ГОСТ 2789-73, то оценка шероховатости проводилась в пределах всей длины светового сечения поверхности бокового профиля. Установлено, что при обработке с тангенциальными ультразвуковыми колебаниями значение Rz = 6,3 мкм, с осевыми Rz = 7,3 мкм, с радиальными Rz = 8,1 мкм, а без ультразвуковых колебаний Rz = 8,2 мкм.
Из представленных результатов следует, что введение в зону резания вынужденных ультразвуковых колебаний приводит к уменьшению высоты микронеровностей по сравнению с обычной обработкой до 20%. Наилучший результат достигается при нарезании резьбы с тангенциальными ультразвуковыми колебаниями. Важным является то, что ухудшения шероховатости поверхности при обработке с радиальными и осевыми ультразвуковыми колебаниями не происходит.
Одним из важных параметров поверхностного слоя, влияющим на работоспособность резьбовых деталей при переменных нагрузках, являются остаточные напряжения, поэтому были проведены экспериментальные исследования влияния направления ультразвуковых колебаний на формирование остаточных напряжений.
Для экспериментального определения остаточных напряжений в резьбовых деталях малого диаметра была использована специальная методика, разработанная С.И. Ивановым и В.Ф. Павловым1, с помощью которой был определён наиболее важный компонент напряжённого состояния – осевые остаточные напряжения, формирующиеся в поверхностном слое впадины резьбы. В соответствии с этой методикой удаляются слои материала с половины диаметра нескольких впадин резьбы и измеряются возникающие при этом перемещения резьбового образца в результате деформаций, возникающих при удалении напряжённого поверхностного слоя некоторой толщины.
Осевые (zres) остаточные напряжения определялись по следующей формуле: