Биомеханические системы внешней фиксации при лечении переломов большеберцовой кости
На правах рукописи
ТКАЧЕВА Ангелина Владимировна
БИОМЕХАНИЧЕСКИЕ СИСТЕМЫ ВНЕШНЕЙ ФИКСАЦИИ
ПРИ ЛЕЧЕНИИ ПЕРЕЛОМОВ БОЛЬШЕБЕРЦОВОЙ КОСТИ
01.02.08 – биомеханика
Автореферат
диссертации на соискание ученой степени
кандидата физико-математических наук
Саратов – 2006
Работа выполнена на кафедре математической теории упругости и биомеханики ГОУ ВПО «Саратовский государственный университет им. Н.Г. Чернышевского»
Научный руководитель: доктор медицинских наук,
профессор Бейдик О.В.
Официальные оппоненты: доктор физико-математических наук,
профессор Скрипаль А.В. (Саратовский госуниверситет им. Н.Г. Чернышевского)
кандидат технических наук
профессор Акулич Ю.В. (Пермский государственный технический университет)
Ведущая организация: Московский государственный университет приборостроения и информатики
Защита состоится 28 декабря 2006 г. в 15.30 на заседании диссертационного совета Д 212.243.10 в Саратовском государственном университете им. Н.Г. Чернышевского по адресу: 410012, г. Саратов, ул. Астраханская, 83, корп.IX, ауд. 218.
С диссертацией можно ознакомиться в Зональной научной библиотеке Саратовского государственного университета им. Н.Г. Чернышевского
Автореферат разослан ___ноября 2006 г.
Ученый секретарь
диссертационного совета,
кандидат физ.-мат. наук, доцент Шевцова Ю.В.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность. Внешний чрескостный остеосинтез является эффективным методом лечения переломов трубчатых костей опорно-двигательного аппарата (Илизаров Г.А., 1982; Бейдик О.В., 2004; Шевцов В.И., 2005, Девятов А.А., 1990; Wagner H., 1994). Он предусматривает проведение фиксаторов в виде спиц и стержней через костные отломки и закрепление их свободных концов во внешних опорах аппарата остеосинтеза. Конструкция фиксаторов и аппарата обеспечивает возможность управления положением отломков с их необходимым сопоставлением при требуемой жесткости фиксации и последующей дистракции либо компрессии. Это улучшает процессы остеогенеза и регенерации костной ткани в зоне перелома, повышая эффективность его сращения и реабилитации больного. Одновременно сохраняется функциональная подвижность конечности и организма в целом, что нормализует протекание процессов обмена и уменьшает вероятность появления локальных воспалительных осложнений (Ли А.Д., 1983; Баширов Р.С., 2002; Соломин Л.Н., 2005; Steinemann S.G., 1988, Vidal J., 1970).
Реализация лечебных и реабилитационных преимуществ чрескостного остеосинтеза в значительной степени обусловлена жесткостью фиксации костных отломков для ограничения величины их перемещений и поворотов при действии функциональных нагрузок. Данные перемещения не должны превышать определенных значений, чтобы не вызвать травматизации образующегося костного регенерата, нарушения процессов его консолидации и сращения перелома. Жесткость фиксации зависит от конструкции и свойств материалов фиксаторов, схемы их расположения в аппарате остеосинтеза, от параметров других элементов аппарата. В то же время на выбор указанных характеристик влияют требования наименьшей травматичности и трудоемкости остеосинтеза, связанные с минимально возможным количеством фиксаторов определенных видов (Корж А.А., 1988; Городниченко А.И., 2000; Фурдюк В.В., 1997; Янсон И.А., 1985).
Попытки разрешения данной сложной многофакторной проблемы за счет поиска и применения различных концепций фиксации в отсутствие единого подхода к остеосинтезу не позволяют существенно уменьшить долю неудовлетворительных результатов лечения переломов. Это имеет особое значение в отношении костей голени, число переломов которых составляет наибольшую долю среди костных сегментов опорно-двигательного аппарата, достигая 35%. Причины данного положения связаны с биомеханическими особенностями берцовых костей, характеризуемых повышенными функциональными нагрузками, при значительной длине, небольшой площади сечения и малой толщине окружающих мягких тканей. В этих условиях недостаточная жесткость фиксации отломков наиболее нагруженной большеберцовой кости приводит к расшатыванию фиксаторов, локальному воспалению и разрушению костной ткани (Мюллер М.Е., 1996, Хелимский А.М., 1976; Либерман С.Б., 1976; Шевцов В.И., 2005).
До настоящего времени разработка общего подхода к выбору рациональных систем внешней фиксации остается незавершенной. При этом одним из эффективных путей выбора и обоснования схем фиксации при переломах трубчатых костей следует считать применение метода моделирования. Поэтому разработка наиболее полного и достоверного обоснования выбора систем внешней фиксации с необходимой жесткостью путем комплексного подхода к ее моделированию для повышения эффективности лечения переломов большеберцовой кости представляет актуальную задачу.
Цель работы: разработка биомеханического обоснования выбора рациональных систем внешней фиксации при лечении переломов большеберцовой кости с помощью комплексного подхода к моделированию остеосинтеза.
Задачи работы:
1. Провести математическое моделирование деформационного поведения фиксаторов под действием нагрузок при остеосинтезе большеберцовой кости.
2. Осуществить компьютерное моделирование напряженно-деформированного состояния систем внешней фиксации под нагрузкой в аппаратах остеосинтеза большеберцовой кости.
3. Провести биомеханическое моделирование характеристик жесткости систем внешней фиксации костных фрагментов большеберцовой кости путем экспериментального исследования моделей аппаратов остеосинтеза.
4. Разработать биотехнические рекомендации по выбору и применению рациональных систем внешней фиксации костных фрагментов с необходимой жесткостью в аппаратах остеосинтеза при лечении переломов большеберцовой кости.
Научная новизна. Впервые предложен комплексный подход к моделированию жесткости системы внешней фиксации отломков большеберцовой кости в аппаратах чрескостного остеосинтеза с использованием математического, компьютерного, биомеханического моделирования. Благодаря этому выявлены взаимосвязи характеристик напряженно-деформированного состояния и жесткости аппаратов с физио-биомеханическими и биомедицинскими параметрами системы фиксации, что позволило обосновать формирование стратегии и тактики остеосинтеза.
Впервые разработаны биотехнические рекомендации, имеющие вид таблицы, по выбору рациональной системы внешней фиксации в аппаратах остеосинтеза большеберцовой кости, обеспечивающие необходимую жесткость фиксации, учитывающие уровень функциональных нагрузок, состояние структуры и прочностные характеристики костной ткани, а также вид перелома.
Практическая ценность. Результаты работы могут быть использованы в практике отделений травматологии и ортопедии медицинских учреждений для повышения эффективности чрескостного остеосинтеза при лечении переломов и устранении деформаций большеберцовой кости и других костных сегментов опорно-двигательного аппарата.
Предложенный комплексный подход к моделированию трех типов систем внешней фиксации фрагментов большеберцовой кости в аппаратах остеосинтеза показал, что консольно-сквозная стержневая система обеспечивает наилучшую жесткость фиксации, так как консольно-стержневая и спицевая системы характеризуются меньшими значениями жесткости.
Разработанные биомеханические рекомендации по созданию и применению систем внешней фиксации с использованием комплексного подхода к их моделированию позволяют всесторонне обосновать формирование стратегии и тактики остеосинтеза. Это характеризуется рациональным выбором вида и числа фиксаторов, а также системы их расположения в аппарате остеосинтеза для получения необходимой величины жесткости фиксации и ее равномерности, обеспечивающих эффективное лечение переломов и устранение деформаций большеберцовой кости, а также и других костных сегментов опорно-двигательного аппарата.
Положения, выносимые на защиту.
1. Деформационные характеристики стержневых фиксаторов при функциональных нагрузках большеберцовой кости в условиях остеосинтеза аппаратами внешней фиксации превосходят показатели спицевых фиксаторов в тех же условиях, что позволило с помощью компьютерного моделирования выбрать в качестве стратегии стержневую фиксацию.
2. Наибольшую жесткость по сравнению с другими типами аппаратов имеют аппараты с консольно-сквозной стержневой фиксацией, что было установлено с помощью компьютерного моделирования. Это определяет рациональный выбор как тактики остеосинтеза.
3. Наиболее близкие к действительным значения перемещений и поворотов фрагментов реальной большеберцовой кости при нагружении функциональными силами были получены с помощью биомеханического моделирования, что выявило наибольшую жесткость и равномерность жесткости системы фиксации консольно-сквозного стержневого аппарата.
4. Результаты комплексного моделирования как биомеханическое обоснование рекомендаций по выбору рациональной системы внешней фиксации отломков большеберцовой кости с необходимой жесткостью при использовании характеристик массы больного, степени остеопороза и вида перелома.
Реализация результатов работы. Комплексный подход к моделированию систем внешней фиксации внедрен в работу отделений травматологии и ортопедии ММУ «Городская клиническая больница №2», ММУ «Городская клиническая больница №9» г. Саратова, в учебный процесс кафедры травматологии, ортопедии и ВПХ СГМУ.
Апробация работы. Основные материалы работы докладывались на III осенней научно-практической конференции студентов и молодых ученых «Молодежь и наука: итоги и перспективы» (г. Саратов, СГМУ, 2005), на VIII съезде травматологов и ортопедов России (г. Самара, 2006), на 67-й весенней научно-практической конференции студентов и молодых специалистов СГМУ: «Молодые ученые – здравоохранению региона» (г. Саратов, 2006), на Всероссийской научно- практической конференции молодых ученых, посвященной 85-летию со дня рождения академика Г.А. Илизарова и 35-летию Российского научного центра «Восстановительная травматология и ортопедия» (г. Курган, 2006).
Публикации. По теме диссертации опубликовано 11 научных работ, в том числе 3 работы в журналах из списка, рекомендованных ВАК, и 8 работ в других изданиях.
Структура и объем диссертации. Работа состоит их введения, пяти глав, выводов и заключения. Общий объем работы составляет 152 страниц, включая 25 рисунков, 13 таблиц, 19 страниц библиографии, содержащей 167 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Введение характеризует актуальность диссертации, цель и задачи работы, положения, выносимые на защиту, научную новизну работы, практическую ценность и реализацию результатов, апробацию работы, ее краткое содержание.
Глава 1 содержит данные обзора и анализа современных исследований и разработок по особенностям биомеханики голени и ее большеберцовой кости, по чрескостному остеосинтезу и внешней фиксации костных отломков при лечении переломов. Даются экспериментально обоснованные допустимые перемещения и повороты отломков, составляющие 3 мм и 2о, которые не вызывают травматизации костного регенерата.
Приводятся сведения о результатах отдельных исследований по моделированию жесткости для обоснования фиксации некоторых костных сегментов конечности, отмечается сложность решения данной многофакторной задачи.
По итогам обзора и анализа путей совершенствования внешней фиксации обоснованы и сформулированы предположения о возможности существенного повышения жесткости и стабильности фиксации отломков большеберцовой кости при лечении переломов за счет комплексного подхода к моделированию с формированием стратегии и тактики остеосинтеза.
В главе 2 содержатся методика и результаты математического моделирования жесткости спицевых и стержневых фиксаторов при их нагружении силами и моментами, соответствующими известным значениям функциональной нагрузки большеберцовой кости. Жесткость фиксаторов рассматривается как их способность оказывать сопротивление деформации под действием функциональных нагрузок и моделируется при использовании положений сопротивления материалов (Степин П.А., 1988; Феодосьев В.И., 2003). Оценка жесткости производится по расчетным значениям наибольших перемещений и поворотов сечения фиксаторов под нагрузкой.
Спицевые фиксаторы испытывают действие поперечных сил от функциональных нагрузок на костный отломок. В этих условиях жесткость спицы при изгибе рассматривается как важнейшая биомеханическая характеристика фиксаторов и определяется выражением:
, (1)
где Ссп – изгибная жесткость спицы, кгсмм2, Е = 2,1104 кгс/мм2 – модуль упругости материала спицы – стали 12Х18Н10Т, Iсп = 0,25 мм4 момент инерции круглого сечения спицы диаметром 1,5 мм.
кгсмм2.
Изгибная жесткость костного отломка на несколько порядков превышает жесткость спицевых и стержневых фиксаторов. Поэтому отломок в составе моделей аппаратов остеосинтеза принимается абсолютно жестким.
Жесткость спицевой фиксации отломка большеберцовой кости определяется для условий деформации нагруженного растянуто-изогнутого стержня с жестко защемленными концами. При этом влияние нагрузки на прогиб упругой линии оси стержня при определенных условиях выражается дифференциальным уравнением:
, (2)
где y – прогиб спицы, мм, S – продольная растягивающая сила, кгс, q(x) – поперечная распределенная нагрузка, которая представляет функцию абсциссы x, совпадающей с осью недеформированной спицы, кгс.
В процессе выполнения конечностью опорных и двигательных функций спица может испытывать прямосимметричное нагружение сосредоточенной силой и кососимметричное нагружение сосредоточенным изгибающим моментом.
Прямосимметричное нагружение спицы сосредоточенной нагрузкой Р с ее предварительным натяжением силой S создает наибольший прогиб уmax в середине ее пролета 2R.
Величина данного прогиба определяется из выражения, полученного в результате интегрирования уравнения (2):
. (3)
Численное нахождение прогиба выполняется с учетом имеющихся биотехнических данных: Р = 50 кгс – наибольшая осевая сила, действующая на кость при движениях больного средней массой 75 кг, 2R = 150 мм – пролет двухопорной спицы, S = 100 кгс – сила предварительного натяжения спицы, ;
– постоянные интегрирования.
Подстановка данных значений в выражение (3) дает величину прогиба: мм.
Кососимметричное нагружение спицы возникает в условиях действия на костный отломок пары сил с наибольшей величиной Р = 17 кгс, что при радиусе костного отломка r = 15 мм создает сосредоточенный изгибающий момент М = 500 кгсмм.
При данных условиях нагружения в середине пролета спицы происходит поворот сечения на угол и возникает прогиб у каждой половины пролета в противоположных направлениях.
Выражение, позволяющее определить максимальный прогиб , устанавливается путем интегрирования дифференциального уравнения (2):
Численное определение прогиба производится с учетом вышеприведенных данных:
мм.
Угол поворота центрального сечения спицы устанавливается по формуле: рад = 5,3о.
Результаты моделирования показали, что жесткость спицевой фиксации при прямосимметричном нагружении значительно меньше, чем при кососимметричном.
В обоих случаях нагружения спицевых фиксаторов их максимальные значения прогиба и угла поворота сечения превышали значения, допустимые по биомедицинским критериям. Это требует увеличения числа спиц для фиксации костных отломков с необходимой жесткостью.
Стержневые фиксаторы подвергаются воздействию нагрузок, создающих условия изгиба, связанные с выражением (1). При этом изгибная жесткость стержневых фиксаторов из титанового сплава ВТ16 диаметром 6мм составляет: кгсмм2.
Жесткость стержневой фиксации определяется для изгибных деформаций, описываемых дифференциальным уравнением:
. (4)
Интегрирование данного уравнения при определенных граничных условиях позволяет установить значения перемещений и углов поворота стержневых фиксаторов под действием функциональной нагрузки. При этом рассматривается консольное расположение фиксаторов, а также их сквозное двухопорное расположение.
Консольный стержень обычно закрепляется непосредственно на внешней опоре либо на промежуточном кронштейне.
Непосредственно закрепленный на опоре стержень может быть нагружен поперечной силой и изгибающим моментом.
Поперечная сила может достигать величины Рmax = 50 кгс при рабочей длине стержня l = 60 мм и создает изгибающий момент в произвольном сечении стержня, равный M(x) = –P (l – x), что позволяет представить дифференциальное уравнение изгиба (4) в виде:
. (5)
Проведя интегрирование уравнения (5) дважды по х и учитывая граничные условия, рассчитываем значения максимального прогиба уmax и угла поворота max стержня-фиксатора:
мм;
.
Изгибающий момент, прикладываемый к стержню костным отломком, может быть равен М = 500 кгсмм, в произвольном сечении его величина составляет: М(х) = – М = const.
Дифференциальное уравнение изгиба стержня (4) при этом принимает вид:
,
после интегрирования которого дважды по х с учетом граничных условий находим расчетные формулы и определяем максимальные значения прогиба и угла поворота: мм;
.
Закрепленный на кронштейне внешней опоры стержень характеризуется жестким соединением кронштейна с опорой и со стержнем-фиксатором, он изготовляется из стали 12Х18Н10Т, имеет форму стержня диаметром d = 6 мм, длиной l2 = 15 мм.
При нагружении такой комбинированной стержневой системы возникающие деформации в рассматриваемом сечении определяются с помощью интеграла Мора. Применительно к данной системе, работающей преимущественно на изгиб, интеграл принимает вид:
.
После подстановки в вышеуказанное уравнение формул изгибающих моментов получим выражения для определения максимальных значений перемещения и угла поворота: мм,
.
Полученные показатели жесткости консольно-стержневой фиксации показали, что закрепление стержня на кронштейне по сравнению с непосредственным закреплением на опоре создает относительное увеличение максимального прогиба, равное , при этом углы поворотов концевых сечений стержня имеют значения близкие к 2,7о.