Фотоактивные наноструктурированные материалы на основе диоксида титана
На правах рукописи
ВИНОГРАДОВ АЛЕКСАНДР ВАЛЕНТИНОВИЧ
ФОТОАКТИВНЫЕ НАНОСТРУКТУРИРОВАННЫЕ
МАТЕРИАЛЫ НА ОСНОВЕ ДИОКСИДА ТИТАНА
02.00.01-неорганическая химия
Автореферат
диссертации на соискание ученой степени
кандидата химических наук
Иваново - 2010
Работа выполнена на кафедре технологии керамики и наноматериалов Государственного образовательного учреждения высшего профессионального образования «Ивановский государственный химико-технологический университет».
Научный руководитель: доктор химических наук, старший научный сотрудник
Агафонов Александр Викторович
Официальные оппоненты: доктор химических наук, профессор
Абросимов Владимир Ксенофонтович
доктор химических наук, доцент
Бердоносов Сергей Серафимович
Ведущая организация: Учреждение Российской академии наук Институт общей и неорганической химии имени Н.С.Курнакова РАН (г. Москва)
Защита состоится «27» сентября 2010 г. в 10 часов в ауд. Г 205 на заседании совета по защите докторских и кандидатских диссертаций Д 212.063.06 при ГОУВПО «Ивановский государственный химико-технологический университет» по адресу: 153000, г. Иваново, пр. Ф. Энгельса, д.7
Тел. (4932) 32-54-33 Факс: (4932) 32-54-33 E-mail: dissovet@isuct.ru
С диссертацией можно ознакомиться в информационном центре ГОУВПО «Ивановский государственный химико-технологический университет» по адресу: 153000, г. Иваново, пр. Ф. Энгельса, д.10.
Автореферат разослан « » августа 2010 г.
Ученый секретарь совета Егорова Е.В.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы: разработка принципов управления свойствами материалов посредством их структурной организации на наноуровне является актуальной задачей современного материаловедения. Среди существующих методов получения наноархитектур темплатный подход в сочетании с золь-гель технологией обладает рядом достоинств, позволяющих методами «мягкой» химии создавать мезоструктурированные гибридные органо-неорганические материалы, свойства которых синергетически сочетают свойства органических субстратов и неорганических фаз, входящих в их состав. Термическая обработка гибридных мезоструктур приводит к формированию мезопористых материалов со специфической регулярной структурой в нанометровом диапазоне и высокоразвитой поверхностью. Вследствие особенностей структуры и электронного строения гибридные и мезопористые материалы на основе диоксида титана, проявляют высокую фотоактивность, что делает их перспективными при создании фотокатализаторов, наноконструкций фотодинамической терапии, элементов фотовольтаических ячеек и оптоэлектроники. Для создания теоретических основ управления фотоактивностью гибридных и мезопористых наноматериалов в настоящее время исследования сосредоточены на выявлении влияния различных факторов, увеличивающих фотоактивность. В связи с этим разработка новых высокоэффективных фотоактивных материалов на основе диоксида титана, и принципов формирования наноструктур с заданными свойствами является актуальной задачей.
Цель работы: установление взаимосвязи состава, строения и характеристик фотоактивности наностурктурированных материалов на основе TiO2, полученных темплатным золь-гель методом с применением в качестве темплатов поверхностно-активных веществ, полимеров и полиэлектролитов с различной координационной активностью по отношению к иону титана.
В рамках поставленной цели решались следующие задачи:
1. Получение гибридных органо-неорганических и мезопористых наноматериалов на основе диоксида титана с помощью темплатного золь-гель синтеза с применением в качестве темплатов додециламина, полиэтиленимина, полиэтилоксазолина и моноолеата полиэтиленгликоля.
2.Выявление закономерностей влияния кислотного и щелочного катализаторов гидролиза прекурсора и ультразвуковых воздействий на реакционные системы в стадии нуклеации на физико-химические свойства диоксида титана, формируемого золь-гель методом.
3.Установление особенностей термической эволюции структуры материалов, получаемых темплатным методом в виде порошков.
4. Анализ фото-вольтаического эффекта в неоднородных мезопористых полупроводниковых структурах диоксида титана, полученных по золь-гель технологии на поверхности никелевой подложки.
5. Сравнение фотокаталитической активности мезопористых порошков диоксида титана, полученных в различных условиях отжига, в реакции обесцвечивания метилового оранжевого в водном растворе под действием ультрафиолета.
Научная новизна работы состоит в следующем:
1. Экспериментально обосновано применение новых молекулярных шаблонов – полиэтиленимина и моноолеата полиэтиленгликоля для получения мезопористого диоксида титана, а также полиэтилоксазолина для получения макропористого диоксида титана золь-гель методом. Установлены закономерности формирования кристаллических фаз при термообработке гибридных материалов. Проведено подробное описание текстурных и структурных характеристик полученных материалов. Выявлена высокая фотокаталитическая активность данных материалов в процессе обесцвечивания раствора метилового оранжевого при облучении ультрафиолетом.
2. Установлено, что одновременное воздействие диэтиламина или уксусной кислоты в качестве катализаторов гидролиза тетраизопропилата титана и ультразвука на реакционные системы в стадии нуклеации диоксида титана, получаемого золь-гель методом, способствует формированию диоксида титана в форме анатаза при температуре прокаливания 300оС и росту первичных кристаллитов, что приводит к росту фотовольтаической и фотокаталитической активности.
3. Получена сравнительная характеристика фото-вольтаического эффекта в мезопористых пленках диоксида титана, сформированных с применением различных темплатов, на поверхности никелевого электрода.
Практическая значимость результатов работы:
1. Выявлены пути увеличения фотокаталитической активности материалов на основе диоксида титана путем подбора темплатов различной химической природы или использования кислотно-основных инициаторов гидролиза в сочетании с ультразвуковой обработкой.
2. Установлена возможность получения оптически прозрачных пленок из диоксида титана с регулируемым размером пор по золь-гель технологии, обладающих фотоактивностью. Отработан метод нанесения гибридных пористых покрытий. Полученные пленки после прокаливания характеризуются приращением ЭДС при облучении ультрафиолетом до 45мВ, что делает их перспективными для использования в фотовольтаических элементах, и для получения фотокаталитически активных покрытий.
3. Разработаны фотоактивные материалы с высокоразвитой структурой, которые могут быть использованы в качестве эффективных дисперсных катализаторов для очистки воды от загрязнений органическими веществами.
4. Полученные результаты используются при реализации проекта, поддержанного грантом Фонда Содействия Малым Формам Предпринимательства «У.М.Н.И.К.», а также при чтении курсов лекций «Технология материалов и покрытий» и «Наноматериалы и нанотехнологии» на кафедре технологии керамики и наноматериалов ГОУВПО ИГХТУ.
Апробация работы: результаты работы, изложенные в диссертационной работе, докладывались и обсуждались на 4-х международных («Кинетика и механизм кристаллизации. Кристаллизация для нанотехнологий, техники и медицины.» Иваново 2008; «Sol-Gel 2009», Porto de Galinhas, Brasil, 2009: «MOLMAT-2010» Montpellier, France; «ISACS2» Budapest, Hungary), 4-х общероссийских (симпозиум «Нанофотоника», 2007, Черноголовка; «ММПСН-2009», Москва; «конференция молодых ученых ИФХЭ РАН», Москва-2009; «Функциональные наноматериалы и высокочистые вещества-2009», Москва), 6-и региональных конференциях (Крестовские чтения 2007, 2008 и 2009 Иваново; «ПОИСК-2009» ИГТА, Иваново; «Органические и гибридные наноматериалы», 2009 Иваново), и представлены на 3-х выставках («Инновации-2007» Иваново, «Селигер-2008» Тверская область, «Инновационный конвент -2009», Дубна). Тезисы докладов опубликованы в материалах соответствующих конференций.
Личный вклад автора: состоит в постановке и проведении эксперимента, обработке литературных и экспериментальных данных, написании в соавторстве научных статей.
Работа подержана грантом Российского Фонда Фундаментальных исследований № 09-03-09373, № 10-03-92658-ИНД_а, а также «У.М.Н.И.К.».
Публикации: по материалам диссертации опубликовано 16 печатных работ, в том числе 3 статьи в периодических научных изданиях и 13 тезисов докладов на научно-технических конференциях.
Достоверность результатов: основывается на применении современных методов исследования, воспроизводимостью данных в пределах заданной точности анализа, отсутствием противоречий с современными представлениями неорганического материаловедения, что подтверждается наличием публикаций в рецензируемых журналах, входящих в перечень ВАК.
Объем и структура диссертации: диссертация состоит из введения, трех глав, выводов и списка литературы. Работа изложена на 134 страницах, содержит 51 рисунок и 6 таблиц. Список цитируемой литературы включает 148 наименований.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность и практическая значимость работы, сформулированы основные цели исследования и показана научная новизна.
1. Обзор литературы
Рассмотрены современные методы получения фотоактивных материалов на основе диоксида титана. Проанализированы возможности управления размерами частиц, мезопористой структурой и фазовым составом диоксида титана, получаемого в золь-гель процессе путем регулирования температуры, рН, введения в систему на различных стадиях и в различной последовательности прекурсора и темплатов, использования неводных растворителей. Сформулированы цели и задачи исследования. Проведен выбор объектов. Предложено использовать в качестве структурообразующих материалов моноолеат полиэтиленгликоля (МОПЭГ), додециламин (ДДА), полиэтиленимин (ПЭИ) и полиэтилоксазолин(ПЭОА)1. Данный выбор был обусловлен, с одной стороны, способностью формировать в растворах разнообразные надмолекулярные структуры мицеллярного типа, а с другой стороны возможностью образования комплексных соединений с ионом титана (ДДА, ПЭИ). МОПЭГ способен вступать в реакцию поликонденсации с гидроксоформами диоксида титана, формирующимися в процессе гидролиза его прекурсоров, а ПЭОА способствует формированию макропористой структуры диоксида титана. ПЭИ, МОПЭГ, ПЭОА использованы в качестве молекулярных шаблонов для получения мезопористого диоксида титана впервые.
2. Экспериментальная часть
Раздел включает описание используемых материалов и реактивов, показателей их качества и схем получения мезопористых и мезоструктурированных органо-неорганических гибридных материалов, приводятся экспериментальные условия и соотношения реагентов при золь-гель синтезе в процессе формирования пленок методом погружения.
Физико-химический анализ синтезированных материалов проводили с использованием стандартных методик. Рентгенофазовый анализ (РФА), рентгеноструктурный анализ (РСА), малоугловую дифракцию рентгеновских лучей проводили на кафедре ХТТН и СМ ИГХТУ с использованием рентгеновского спектрометра ДРОН-2, источник излучения CuK напряжение 40 кВ. Низкотемпературную адсорбцию/десорбцию азота проводили на установке Micromeritics ASAP 2020 в Омском научном центре СО РАН, а также Институте технической химии УрО РАН. Термический анализ порошков синтезированных материалов проводили в лаборатории «Физическая химия растворов макроциклических соединений» ИХР РАН на модифицированном дериватографе 1000D МОМ (Венгрия) с компьютерной регистрацией результатов. В качестве вещества сравнения использовали порошок -Al2O3. Элементный анализ (Carbo Erbo Termoclas, Италия), сканирующую зондовую микроскопию (СЗМ) (Solver P47 PRO), инфракрасную Фурье-спектроскопию (Avatar 360 FT-IR ESP), УФ-видимую спектроскопию (Спектрофотометр Cary 100) проводили в центре коллективного пользования ИХР РАН-ИГХТУ. Для исследования форм и размера частиц порошка была использована просвечивающая электронная микроскопия с применением метода оттенения (электронный микроскоп ЭМВ – 100 Л, ускоряющее напряжение 50 кВ, паспортное разрешение 3 A лаборатория структурных методов анализа ИвГУ).
Изучение функциональных свойств полученных материалов проводили посредством определения фотополяризационных характеристик пленок и фотокаталитической активности порошков (реакция фотоокисления метилового оранжевого в водной суспензии катализатора). Измерения проводились автором на установке фотоэлектрохимической поляризации (кафедра ТЭП ИГХТУ под руководством д.т.н. Балмасова А.В.) и в УФ облучаемом реакторе со спектрофотометрической регистрацией (ИХР РАН). Расшифровка результатов измерений и обработка экспериментальных данных проводилась автором диссертации.
В качестве образца сравнения был использован коммерческий фотокатализатор компании Evonic-Degussa марки Aeroxide P25. Он представляет собой агрегированный порошок, Sуд.=50м2/гр., фазовый состав: 25% рутила и 75% анатаза.
3. Обсуждение результатов.
Закономерности влияния кислотно-основного типа инициатора гидролиза прекурсора изопропилата титана и ультразвуковых воздействий на физико-химические свойства наноразмерного диоксида титана, формируемого золь-гель методом.
Переход к ультрадисперсным полупроводниковым материалам позволяет существенно сократить отношение концентрации носителей зарядов в объеме частицы к их концентрации на поверхности, что обуславливает их высокую реакционную активность. Вместе с тем, существенное влияние на структуру наночастиц, формируемых золь-гель методом оказывают условия синтеза – тип растворителя, температура, концентрация реагентов, а так же рН и ультразвуковая обработка (УЗ) растворов на стадии нуклеации. Золь-гель процесс получения наноразмерных частиц диоксида титана основан на протекании реакций гидролиза титансодержащего прекурсора -Ti(OC3H7)4 и реакций поликонденсации, протекающих в водно-спиртовой среде:
Ti -OR + H2OTi -OH + R(OH) (1)
Ti -OH + RO -TiTi -O- Ti +R(OH) (2)
Ti -OH + OH-TiTi -O- Ti +H2O (3)
Ti –(OR)4 + (х+2)H2OTiO2·(хH2O) + 4R(OH) (4)
Таблица 1 |
|||
Физико-химические характеристики диоксида титана, полученного золь-гель методом с различными катализаторами гидролиза и при УЗ воздействиях. | |||
Исследуемая система | Фазовый состав | Средний размер кристаллитов (при 300оС), нм | Температура фазового перехода, оС |
TУК-300 | Анатаз | 11,3 | 330 |
TДЭА-300 | Анатаз | 9,1 | 280 |
(TУК-300)+УЗ | Анатаз | 13,5 | 330 |
(TДЭА-300)+УЗ | Анатаз | 12,2 | 270 |
Представленные реакции приводят к формированию коллоидной системы нанокластеров, которая, в зависимости от рН, может переходить в гель (рН 2-6, образование макроскопических ориентированных структур) или золь (рН>6, наноразмерные металл-полимерные комплексы). Нами показано, что наряду с влиянием рН проведение ультразвуковой обработки растворов на стадии нуклеации частиц золя также может приводить к дополнительному увеличению степени кристалличности образцов после прокаливания, что способствует возрастанию каталитических свойств материалов. Синтез наноразмерных порошков диоксида титана проводили, используя следующую схему: к 80 мл раствора тетраизопропилата титана (С=0,5моль/л) добавляли 20 мл раствора катализатора гидролиза – уксусной кислоты (УК) или диэтиламина (ДЭА) при перемешивании (СДЭА=1моль/л, СУК=1,75моль/л). Последующая гомогенизация раствора происходила в течение 2 часов, после чего проводилась УЗ обработка.
![]() |
![]() |
Рис.2. Влияние кислотного и щелочного катализаторов гидролиза прекурсора и ультразвуковых воздействий на реакционные системы в стадии нуклеации при золь-гель синтезе на структуру материалов а) TУК-300, б) TДЭА-300 |
Синтез продолжали в течение 4 часов при 70оС и непрерывном перемешивании. Одну часть полученного золя использовали для нанесения пленок, а другую высушивали при температуре 80оС до порошкообразного состояния с постоянной
массой.
Прокаливание порошка осуществлялось при 300оС в течение одного часа.
Электроно-микроскопический анализ порошков показал, что все материалы, вне зависимости от условий синтеза наноразмерные (размер частиц не превышает 200нм) и имеют узкое распределение по размерам.
Термический анализ материалов показал, табл.1, что образец TДЭА-300 кристаллизуется в фазе анатаза при 280оС, а TУК-300 - при 330оС.
По данным ИК-спектроскопии проведение ультразвуковой обработки в процессе нуклеации, не приводит к изменению химического состава исследуемых порошков.
Рентгенограммы порошков TiO2, (рис.2.) свидетельствуют о том, что реализуемые в процессе золь-гель синтеза условия приводят к формированию устойчивой кристаллической фазы анатазной модификации (имеющееся небольшое уширение дифракционных пиков свидетельствует о незначительной степени аморфизации поверхности материала). Кристалличность образцов, полученных с применением УК, несколько ниже, чем синтезированных в присутствии ДЭА. Так, в первом случае средний размер кристаллитов, определенных по методу Шеррера, составил 11,3нм, а в последнем 9,3нм. Результаты малоугловой дифракции рентгеновских лучей, представленные на рис.2, свидетельствуют об отсутствии в системе ближнего порядка в виде системы мезопор.
![]() |
![]() |
![]() |
![]() |
A-анатаз, В-брукит, R-рутил Рис.3 Термическая эволюция структуры гибридных материалов на основе диоксида титана, полученных темплатным методом с использованием а) ПЭОА, б) ДДА, в) ПЭИ, г) МОПЭГ по данным РФА и РСА. |