Методы моделирования процессов распространения радиоволн в урбанизированной среде
На правах рукописи
Дудов Руслан Александрович
Методы моделирования процессов распространения радиоволн в урбанизированной среде
Специальность: 01.04.03 – радиофизика
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата физико-математических наук
“Можно печатать”
Научный руководитель_______________________________Королев А.Ф.
“В печать”
Заведующий кафедрой общей и экспериментальной физики______________Гольцман Г.Н.
Председатель диссертационного совета_____________________________________Мансуров А.Н.
Предполагаемая дата защиты « » октября 2010 года
Ученый секретарь диссертационного совета________________Ильин В.А.
Москва – 2010
На правах рукописи
Дудов Руслан Александрович
МЕТОДЫ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ РАСПРОСТРАНЕНИЯ РАДИОВОЛН В УРБАНИЗИРОВАННОЙ СРЕДЕ
Специальность 01.04.03 - радиофизика
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата физико-математических наук
Москва – 2010
Работа выполнена в Московском государственном университете имени М.В. Ломоносова на кафедре фотоники и физики микроволн физического факультета
и в Московском педагогическом государственном университете
на кафедре общей и экспериментальной физики факультета физики
и информационных технологий
Научный руководитель: кандидат физико-математических наук, доцент
Королев Анатолий Федорович
Официальные оппоненты: доктор технических наук, профессор
Шорин Олег Александрович
доктор физико-математических наук, профессор
Хотунцев Юрий Леонтьевич
Ведущая организация: Московский государственный
институт электронной техники
(технический университет)
Защита диссертации состоится «18» октября 2010 г. в 15 часов на заседании Диссертационного совета Д 212.154.22 при Московском педагогическом государственном университете по адресу: 119435, Москва, ул. М. Пироговская, д. 29, ауд. 30.
С диссертацией можно ознакомиться в библиотеке Московского педагогического государственного университета по адресу: 119992, Москва, Малая Пироговская ул., д. 1.
Автореферат разослан « » сентября 2010 года.
Ученый секретарь
диссертационного совета Ильин В.А.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы и состояние вопроса. Вопросы прогнозирования распространения радиоволн над поверхностью Земли интересовали исследователей со дня изобретения способа передачи информации по радиоканалу в 1895 г. В 1928 Б.А. Введенским была предложена «квадратичная формула» для описания распространения УКВ над земной поверхностью в пределах прямой видимости, которая и сейчас широко используется на практике. В 1946—1950 гг. М.А. Леонтовичем и В.А. Фоком были опубликованы работы по решению задач распространения радиоволн над поверхностью Земли с учетом дифракции и рефракции [1—3].
С развитием вычислительной техники и методов математического моделирования стали появляться новые методы моделирования распространения радиоволн, позволяющие учитывать локальные особенности среды распространения [4, 5]. Использование данных методов позволило решать задачи распространения радиоволн в таких существенно неоднородных средах как участки городской застройки и области внутри зданий.
В настоящее время имеет место активное развитие и внедрение беспроводных технологий передачи информации. На смену голосовой мобильной связи 2G1 (GSM, CDMA2), предъявляющей довольно низкие требования к пропускной способности канала (до 384 Кбит/с), приходят технологии 3G и 4G (UMTS3, HSDPA4, Wi-Fi5, WiMAX6), требования которых к пропускной способности канала (до 1 Гбит/с) и качеству покрытия существенно выше. В связи с этим острее встает проблема повышения качества проектирования беспроводных сетей.
В задачи проектирования может входить не только обеспечение максимальной зоны покрытия, но также намеренное ограничение уровня сигнала за пределами данной зоны, вызванное вопросами электромагнитной совместимости близкорасположенных сетей, экологическими вопросами, а также вопросами информационной безопасности.
В настоящее время для проектирования беспроводных сетей в основном используются приближенные методы расчета [6—10], не учитывающие мелкие неоднородности среды распространения, либо проводятся трудоемкие натурные измерения. Существенным препятствием для использования детерминированных методов моделирования распространения радиоволн является слабое развитие технологий создания моделей сред распространения, применимых для использования в алгоритмах моделирования.
Все вышесказанное подтверждает актуальность темы рассматриваемой в настоящей диссертационной работе.
Цель работы. Целью работы является разработка методики решения задач, связанных с распространением радиоволн УКВ-диапазона в урбанизированной среде. К таким задачам относятся как прямые задачи получения характеристик электромагнитного поля в заданной области пространства при известном положении передатчика и характеристиках передаваемого сигнала, так и обратные задачи определения местоположения передатчика по характеристикам электромагнитного поля в нескольких заданных точках.
Задачи работы:
— разработка численного алгоритма для моделирования распространения радиоволн над нерегулярной поверхностью Земли на основе решения параболического волнового уравнения в широкоугольной форме для кусочно-линейного представления поверхности;
— разработка методики моделирования распространения радиоволн в зданиях с использованием геоинформационных технологий и метода конечных интегралов;
— разработка алгоритмов для обработки и визуализации результатов, полученных с помощью методов параболического волнового уравнения и метода конечных интегралов, а также их сравнения с результатами других методов;
— исследование влияния точности радиотехнической модели среды распространения на результат моделирования с помощью методов параболического волнового уравнения и конечных интегралов;
— исследование влияния конструкционных материалов и отдельных конструкционных элементов здания на характер распространения радиоволн с помощью метода конечных интегралов;
— разработка численного алгоритма для решения обратных задач распространения радиоволн в урбанизированных средах.
Методы исследования. В работе использованы методы вычислительной электродинамики и вычислительной математики.
Численные расчеты производились в средах MathCAD и MATLAB. Для расчета с помощью метода конечных интегралов использовался программный продукт CST Microwave Studio. В качестве геоинформационной системы использовался пакет ArcGIS 9.x.
Научная новизна диссертации:
1. Разработана методика моделирования распространения радиоволн в зданиях с использованием программного продукта CST Microwave Studio. Разработана методика интеграции CST Microwave Studio с геоинформационной системой ArcGIS 9.x. Программный продукт CST Microwave Studio был впервые использован для моделирования распространения радиоволн внутри зданий.
2. Проведено исследование влияния точности радиотехнической модели среды распространения на результат моделирования с помощью метода параболического волнового уравнения и метода конечных интегралов.
3. Проведено исследование влияния конструкционных материалов и отдельных конструкционных элементов здания на характер распространения радиоволн в зданиях с помощью метода конечных интегралов.
Обоснованность и достоверность результатов работы. Результаты исследований получены на основе строгих электродинамических и математических моделей. Использованный метод решения параболического волнового уравнения получен на основе описанных в литературе методов [11—15]. Контроль результатов осуществлялся сравнением с классическими методами. Корректность результатов программы CST Microwave Studio тестировалась сравнением с результатами измерений.
Практическая ценность работы. Результаты, полученные в диссертации, имеют большое практическое значение применительно к вопросам проектирования и использования беспроводных сетей передачи информации. Разработанные алгоритмы могут быть использованы:
— для определения зоны покрытия сетей, исходя из заданных положений базовых станций;
— для определения оптимального расположения базовых станций, обеспечивающего заданные характеристики зоны покрытия:
— для решения задач электромагнитной совместимости близкорасположенных сетей и т.д.
Положения, выносимые на защиту
Показано, что метод решения параболического волнового уравнения в широкоугольной форме применим для численного расчета распределения напряженности электромагнитного поля над нерегулярной поверхностью Земли, заданной в кусочно-линейной форме, для диапазона длин волн 0,1—1 м, при пространственных масштабах рассматриваемых участков от 100 м до 10 км и различных условиях распространения радиоволн.
Установлено, что метод конечного интегрирования при моделировании распространения радиоволн УКВ-диапазона в зданиях позволяет получить пространственное распределение напряженности электромагнитного поля с точностью до 5 дБ на масштабах, сравнимых с длиной волны. Высокая точность метода позволяет использовать его для проектирования беспроводных сетей передачи информации внутри зданий.
Определены требования к радиотехнической модели здания, необходимой для решения задач с помощью метода конечного интегрирования. Показано, что точность модели существенно влияет на корректность получаемых результатов. Показано влияние изменений отдельных электрофизических и геометрических характеристик элементов здания на пространственное распределение электромагнитного поля.
Апробация работы. Основные результаты диссертационной работы сообщались на Международной научной конференции «Ломоносов-2004» (г. Москва, 2004 г.), XII Всероссийской школе-семинаре «Физика и применение микроволн «Волны—2009»» (Моск. обл., 2009 г.), III Всероссийской научно-технической конференции «Радиолокация и радиосвязь» (г. Москва, 2009), Лофборской конференции по антеннам и распространению LAPC'2009 (г. Лофборо, Великобритания, 2009 г.). Материалы диссертации многократно докладывались и обсуждались на семинарах кафедры фотоники и физики микроволн физического факультета МГУ и на семинарах УНРЦ МПГУ.
Публикации. Результаты исследований, вошедшие в диссертацию, опубликованы в 7 печатных работах: 3 статьи в периодических научных изданиях, два из которых включены в перечень ВАК, и 4 публикации в форме тезисов докладов.
Структура работы. Диссертационная работа состоит из введения, пяти глав, заключения и списка литературы. Основная часть работы состоит из 189 страниц. Список литературы содержит 37 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы, сформулированы цель и основные задачи исследования, описаны состав и структура работы, определены ее новизна и практическая ценность.
Глава 1 «Современные методы решения задач распространения радиоволн УКВ-диапазона над поверхностью Земли и в зданиях» посвящена описанию и теоретическому обоснованию приближений, используемых в квазиоптических методах, и обзору современных методов решения задач распространения радиоволн в урбанизированных средах. Производится сравнение методов, описываются их особенности и границы применимости. Даются рекомендации по выбору метода моделирования в зависимости от характера решаемой задачи. Уделяется внимание такому существенному фактору в решении задач распространения радиоволн в урбанизированных средах как построение модели среды распространения.
В качестве урбанизированных сред в настоящей работе рассматриваются:
— пригородные зоны с нерегулярным рельефом земной поверхности, растительностью и редкой застройкой;
— городские зоны с частой застройкой;
— зоны, находящиеся внутри зданий, а также граничные зоны между внутренними частями здания окружающей средой.
В Главе 1 также приводится краткое описание геоинформационных технологий, с помощью которых можно создавать модели урбанизированных сред для их дальнейшего использования в алгоритмах моделирования. Геоинформационные системы (ГИС) представляют собой мощные средства подготовки, преобразования и отображения пространственных данных, а также предоставляют возможность проведения пространственного анализа (например, взаимного расположения объектов местности, распределения интенсивности электромагнитного поля по территории и т.д.). Примером многопланового ГИС пакета может служить программный продукт ArcGIS 9.x.
Глава 2 «Использование параболического волнового уравнения для моделирования распространения радиоволн над поверхностью Земли» посвящена детальному рассмотрению метода параболического волнового уравнения (ПВУ), применимого для моделирования процессов распространения радиоволн в пригородных и городских зонах. Производится анализ особенностей численной реализации алгоритма на основе данного метода. Проводится исследование влияния точности модели среды распространения на результат расчета.
Для моделирования распространения радиоволн над нерегулярным рельефом и в городской среде применяется метод ПВУ в широкоугольном приближении с кусочно-линейными граничными условиями:
. (1)
где — горизонтальная,
— вертикальная координаты,
— волновое число,
— угол наклона линейного сегмента поверхности для текущего шага по оси
. Для численного решения уравнения (1) использовался пошаговый метод Фурье, суть которого состоит в получении вертикального профиля напряженности поля на расстоянии
от источника, на основе заданного профиля на расстоянии
с помощью полного цикла прямого и обратного преобразования Фурье:
(2)
где и
соответствуют прямому и обратному преобразованию Фурье,
— показатель преломления, который может быть комплексным и зависеть от координат,
— пространственная частота волны.
В целях исследования влияния точности модели среды распространения на результат расчета, при фиксированной высоте препятствия определялось, насколько изменятся значение поля за препятствием в зависимости от ошибки задания высоты и расстояния до препятствия. Показано, что ошибка определения высоты препятствия является более критичной, чем неточное задание расстояния между препятствиями. Так, при ошибке определения высоты более 20% среднеквадратичное отклонение в зоне за препятствием превышает 5 дБ.
Полученные критические значения неточности модели были сопоставлены с точностью карт, которые можно использовать для получения информации о рельефе (масштабы 1:200 000 и 1:25 000). Для случая распространения в городской среде проанализирована точность определения высоты зданий, исходя из этажности, указываемой на картах масштаба 1:25 000. Полученные в результаты позволяют говорить об эффективности использования метода ПВУ для моделирования распространения электромагнитных волн над нерегулярным рельефом в диапазоне длин волн (0,1—1) м, при пространственных масштабах рассматриваемых участков от 100 м до 10 км и различных условиях распространения радиоволн.
Глава 3 «Особенности распространения радиоволн в зданиях и возможность прогнозирования мелкомасштабных вариаций поля» посвящена анализу методов описания процессов распространения радиоволн внутри зданий. Определяются особенности и границы применимости методов, производится сравнение результатов расчета и с результатами измерений.
Для компьютерного моделирования использовалась программа CST Microwave Studio. Данная программа производит расчеты с помощью метода конечного интегрирования (МКИ).
В отличие от большинства численных методов, метод конечного интегрирования рассматривает уравнения Максвелла не в дифференциальной, а в интегральной форме. Рассмотрим способ дискретизации каждого из уравнений Максвелла в интегральной форме. Для этого сначала определим дискретную сетку G:
(3)
Запишем закон Фарадея в интегральной форме:
(4)
Для произвольной грани ячейки определенной выше сетки данное уравнение можно записать в виде простого дифференциального уравнения:
(5)
![]() ![]() |
![]() |
Здесь скалярная величина является напряженностью электрического поля вдоль ребра грани
. Скалярная величина
является магнитным потоком через грань
.
Уравнения (5) для всех граней сетки могут быть записаны в матричном виде:
![]() |
(6) |
Аналогичным образом преобразуется второе уравнение Максвелла, описывающее отсутствие магнитных зарядов:
(7)
Заменив интеграл по поверхности ячейки на сумму магнитных потоков через ячейки получаем следующее уравнение:
(8)
Систему уравнений для всех ячеек сетки можно записать в матричном виде аналогично (6):
![]() |
(9) |