Исследование и разработка индукционных люминесцентных источников света на частотах 100-15 000 кгц
На правах рукописи
ПОПОВ Олег Алексеевич
ИССЛЕДОВАНИЕ И РАЗРАБОТКА ИНДУКЦИОННЫХ ЛЮМИНЕСЦЕНТНЫХ ИСТОЧНИКОВ СВЕТА
НА ЧАСТОТАХ 100-15 000 кГц
Специальность:
05.09.07 – Светотехника
05.27.02 Вакуумная и плазменная электроника
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
доктора технических наук
МОСКВА – 2011 г.
Работа выполнена на кафедре Светотехники Московского энергетического института
(технического университета)
Официальные оппоненты Доктор физико-математических наук, профессор
Василяк Леонид Михайлович
Доктор физико-математических наук
Кралькина Елена Александровна
Доктор физико-математических наук, профессор
Степанов Владимир Анатольевич
Ведущая организация Рязанский государственный радиотехнический
университет
Защита состоится « 20 » января 2012 г. в 14:00 часов на заседании диссерта-
ционного совета Д 212.157.12 при Московском энергетическом институте
(Техническом университете) по адресу: г. Москва, ул. Красноказарменная, д. 13-Е,
ауд. Е-603.
С диссертацией можно ознакомиться в научно-технической библиотеке Московского энергетического института (Технического университета).
Отзывы в двух экземплярах, заверенные печатью учреждения, просим направлять по адресу: 111250, г. Москва, ул. Красноказарменная, д. 14, Ученый совет МЭИ.
Автореферат разослан « » _________________ 2011 г.
Ученый секретарь диссертационного совета
Д 212.157.12, к.т.н., доцент Ремизевич Т.В.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ:
Актуальность работы
Люминесцентные лампы (ЛЛ) с внутренними электродами являются одним из самых эффективных и широко применяемых источников света. Трубчатые прямые ЛЛ, работающие на переменном токе частотой от 50 Гц до 20 кГц и на мощностях от 13 до 80 Вт, имеют хорошие цветовые характеристики (цветовая температура Тц = 3000 - 6000 К, общий индекс цветопередачи Ra = 60 - 90), быстрое разгорание ( 1 мм рт.ст.) интенсивным и быстрым разрушением оксидного слоя, нанесенного на внутренние электроды ЛЛ, приводящим к выходу лампы из строя.
С начала 80-х годов прощлого века ведется разработка безэлектродных газоразрядных люминесцентных источников света, использующих для генерации ультрафиолетового излучения плазму индукционного разряда, возбуждаемую в колбе внешним высокочастотным (ВЧ) индуктором. Индукционные лампы имеют простую конструкцию, хорошие световые и эксплуатационные характеристики и параметры, не уступающие таковым ЛЛ с внутренними электродами. А ресурс индукционных ламп 60000–100 000 ч значительно превышает срок службы традиционных ЛЛ. Безэлектродные люминесцентные индукционные лампы лишены тех ограничений на конструкцию вакуумного блока и на давление инертного газа, которые имеют ЛЛ с внутренними электродами. Они могут иметь практически любую конфигурацию, определяемую конструкцией и размерами ВЧ индуктора и газоразрядной колбы, и способны работать в широком диапазоне мощностей 15-500 Вт при весьма низких для традиционных ламп давлениях инертного газа 0,01-0,1 мм рт.ст. Это открывает возможности для создания новых типов индукционных люминесцентных ламп и улучшения характеристик и параметров существующих: снижением мощности потерь в ВЧ индукторе и повышением световой отдачи плазмы. Важную роль в повышении конкурентоспособности индукционных ламп играет возможность снижения их себестоимости, веса, габаритов, а также простота конструкции лампы и дешевизна технологического процесса их изготовления.
Существенным прогрессом в технологии индукционных ламп стало бы снижение частоты питающего их напряжения, что привело бы не только к ослаблению психологического барьера, связанного с эксплуатацией ламп, питающихся от генератора ВЧ мощности, но и к ряду технических преимуществ, повышающих энергетическую эффективность всего источника света, упрощающих конструкцию лампы и снижающих себестоимость источника света и стоимость его технического обслуживания. С уменьшением частоты генератора возрастает его к.п.д. и снижается уровень создаваемых ВЧ индуктором и плазмой электромагнитных помех, что устраняет необходимость экранировки лампы и упрощает ее конструкцию. Наконец, работающий на низких частотах 100-400 кГц электронно-пускорегулирующий аппарат (ЭПРА) можно размещать на значительном от лампы расстоянии (до нескольких метров), что упрощает обслуживание источника света и значительно расширает сферу его применения.
В связи с вышеизложенным представляется актуальным:
- Проведение экспериментальных и теоретических исследований индукционных разрядов низкого давления в парах ртути и инертного газа в широком диапазоне частот ВЧ поля, мощности лампы, давления инертного газа, параметров ВЧ индуктора, размеров вакуумного блока.
- Создание новых типов эффективных безэлектродных индукционных люминесцентных источников света, как с магнитным усилением, так и бесферритных, работающих на относительно низких частотах ВЧ поля 100-1000 кГц и низких давлениях инертного газа ри.г.
- Усовершенствование конструкций и характеристик существующих типов индукционных люминесцентных ламп, работающих на низких частотах.
Результаты работы могут быть использованы в качестве базы данных для исследователей индукционных разрядов низкого давления, для разработчиков источников УФ излучения, стандартов оптического излучения, источников плазмы, применяемых в плазменной технологии, источников ионов и других технологических применений плазмы низкого давления.
Основные цели работы
1. Создание нового направления в газоразрядных индукционных люминесцентных источниках света: индукционные люминесцентные лампы на низких частотах возбуждения f = 100-400 кГц, высоких удельных мощностях плазмы Р1 > 1 Вт/см и низких давлениях инертного газа ри.г.
2. Систематическое исследование электрических, энергетических и световых характеристик индукционных люминесцентных ламп различных типов в широком диапазоне условий питания (мощности лампы, частоты ВЧ поля), параметров ВЧ индуктора, размеров разрядной колбы/трубки и давления рабочей смеси.
3. Создание комплексной модели индукционной люминесцентной лампы низкого давления на частотах возбуждения (ВЧ поля) f = 0,1–15 мГц, включающей трансформаторную модель индукционного разряда, электродинамическую модель индукционной плазмы, уравнения мощности потерь в ВЧ индукторе и эмпирические соотношения, связывающие световые характеристики лампы с конструктивными параметрами разрядной колбы и условиями питания разряда.
4. Создание новых типов эффективных бесферритных индукционных люминесцентных ламп в замкнутых и незамкнутых разрядных трубках, в которых плазма индукционного разряда возбуждается ВЧ током индуктивной катушки, размещенной по периметру трубки.
5. Создание индукционных люминесцентных ламп с полостью, работающих на относительно низких частотах 100-150 кГц на уровнях мощности от 25 до 500 Вт.
6. Создание новых типов ламп трансформаторного типа на частотах 100-400 кГц.
Основные положения, выносимые на защиту, и научная новизна работы
В диссертационной работе впервые получены следующие результаты:
1. На основе трансформаторной модели индукционного разряда, электродинамических моделей ВЧ индукционного разряда низкого давления, уравнений мощности потерь в ВЧ индукторе и эмпирических соотношений для напряженности ВЧ электрического поля и световой отдачи плазмы диссертантом предложена комплексная модель индукционной люминесцентной лампы, связывающая электрические, энергетические и световые характеристки лампы с конструктивными параметрами вакуумного блока, ВЧ индуктора и плазмы индукционного разряда. Получены аналитические выражения, связывающие параметры плазмы индукционного разряда и мощность потерь в ВЧ индукторе с конструктивными параметрами лампы и условиями ее питания.
2. Созданы математические модели расчета плазмы индукционных разрядов низкого давления в разрядных бесферритных замкнутых и незамкнутых трубках, возбуждаемых индуктивной катушкой с витками, расположенными паралелльно оси разрядной трубки. На основе моделей рассчитано пространственное распределение напряженности ВЧ индукционного электрического поля, плотности разрядного тока и объемной плотности мощности плазмы индукционного разряда.
3. Экспериментальными исследованиями зажигания емкостного и индукционного разрядов, возбужденных ВЧ индуктором на частотах 100-15000 кГц в смеси паров ртути и инертного газа низкого давления, установлено, что зажиганию индукционного разряда предшествует зажигание емкостного разряда. Анализ двух типов ВЧ электрических полей, емкостного и индукционного, генерированных током индуктивной катушки показал, что вблизи витков катушки напряженность емкостного поля в несколько раза превышает напряженность индукционного поля.
4. Экспериментально обнаружено, что на частотах ВЧ поля 100–1000 кГц напряженность ВЧ электрического поля зажигания индукционного разряда и ВЧ
напряжение на индуктивной катушке не зависят от частоты поля. ВЧ ток катушки и мощность зажигания индукционного разряда уменьшаются с частотой ВЧ поля.
Результаты эксперимента находятся в хорошем согласии с результатами расчета, проведенного в рамках комплексной модели индукционной лампы.
5. Экспериментальные исследования, проведенные в установившемся режиме работы индукционных ламп с полостью и ламп трансформаторного типа с кольцевыми магнитопроводами, показали что характер зависимости мощности потерь в ВЧ индукторе от мощности лампы определяется отношением частот / и величиной добротности плазменного витка/шнура Q2. На низких частотах ВЧ поля /
6. Экспериментально обнаружено, что на частотах ВЧ поля
7. Экспериментально установлено, что на частотах ВЧ поля f = 100-10 000 кГц световая отдача лампы v есть произведение световой отдачи плазмы pl на к.п.д. ВЧ индуктора с, а ее зависимость от мощности лампы имеет максимум, сдвигающийся в сторону меньщих мощностей лампы с увеличением частоты ВЧ поля, давления инертного газа, сечения сердечника/магнитопровода, диаметра разрядной трубки/колбы и с уменьшением длины плазменного витка/щнура. Зависимость световой отдачи лампы от давления инертного газа имеет максимум, который с увеличением мощности лампы и размеров разрядной колбы/трубки сдвигается в сторону меньших давлений.
8. Предложены, сконструированы и экспериментально апробированы два новых типа бесферритных безэлектродных индукционных люминесцентных ламп в
замкнутых и незамкнутых разрядных трубках, возбуждаемых ВЧ током индуктивной катушки, охватывающей лампу по ее продольному периметру. Лампы
работают на частотах ВЧ поля 200-15 000 кГц и мощностях 100-500 Вт со световыми отдачами 80-90 лм/Вт.
9. Предложены, сконструированы и исследованы мощные 300-450 Вт индукционные люминесцентные лампы с двумя полостями и ВЧ индукторами, симметрично размещенными на оси цилиндрической разрядной колбы. Лампы работают на частоте 130-400 кГц со световыми отдачами свыше 90 лм/Вт.
10. Предложены, сконструированы и экспериментально исследованы новые модификации ламп трансформаторного типа: а) с одной индуктивной катушкой, охватывающей кольцевые магнитопроводы и б) с разрядной трубкой эллиптического сечениия. Лампы работали на частотах 100-150 кГц и мощностях 60-300 Вт со световой отдачей свыше 90 лм/Вт.
11. На основе результатов проведенных в работе исследований диссертантом предложены, сконструированы и разработаны:
а) эффективные (v > 90 лм/Вт) индукционные люминесцентные лампы с полостью и ферромагнитным сердечником, работающие на частоте 135 кГц и уровнях мощности от 40 до 450 Вт;
в) компактная индукционная люминесцентная лампа с ЭПРА, встроенным в цоколе лампы, работающая на частотах 130-200 кГц и мощностях 20-25 Вт со световой отдачей 70 лм/Вт.
Результатом исследований свойств и характеристик индукционных люминесцентных ламп низкого давления, проведенных в диссертации в широком диапазоне частот ВЧ поля и мощности лампы, конструкций ВЧ индукторов и конструктивных параметров разрядных колб и трубок стало создание нового направления в технологии индукционных люминесцентных источников света: низкочастотные 100-400 кГц безэлектродные индукционные люминесцентные лампы с низким давлением инертного газа 0,01- 0,3 мм рт.ст. работающие на высоких удельных мощностях плазмы 1,5–15 Вт/см со световой отдачей 80-100 лм/Вт.
Практическая значимость работы
1. Полученные в работе аналитические выражения могут быть использованы для создания эффективных инженерных методов расчета характеристик и конструктивных параметров безэлектродных газоразрядных источников излучения.
2. Рассчитанные для частот ВЧ поля 100-400 кГц характеристики и параметры плазмы индукционного разряда низкого давления позволяют оценить, насколько оптимально выбраны конструктивные параметры и условия питания индукционных люминесцентных ламп, и наметить пути их улучшения.
3. Разработаны, исследованы и доведены до опытного образца индукционные люминесцентные лампы с полостью, работающие на частоте 135 кГц со световой отдачей 94-95 лм/Вт. На их основе фирмой Matsushita (Panasonic) выполнены инженерные разработки и налажен промышленный выпуск индукционных источников света различной мощности: Everlight 50, Everlight 150 и Everlight 240.
4. Разработана, исследована и доведена до опытного образца компактная индукционная люминесцентная лампа мощностью 23 Вт, работающая на частоте 100 кГц со световой отдачей 65 лм/Вт. На ее основе фирмой Matsushita (Panasonic) разработаны два компактных люминесцентных источника света марки Pa-look Ball со сроком службы 30 тыс. часов, работающих на частоте 480 кГц: а) 12 Вт (световой поток 800 лм); b) 20 Вт (световой поток 1300 лм).
5. Впервые предложены и экспериментально апробированы бесферритные индукционные люминесцентные лампы с прямой и замкнутой (кольцевой) трубкой, возбужденные ВЧ током индуктивной катушки с продольным расположением витков. Лампы работают на частотах 0,3 - 14 МГц и мощности 100-200 Вт со световой отдачей 83-85 лм/Вт. Они отличаются простотой конструкции и представляют практический интерес для ламп общего освещения и для источников УФ излучения.
6. Разработаны методы контроля температуры ртутной амальгамы, обеспечивающие в заданном интервале температур окружающей среды
максимальный световой поток лампы. Предложены метод и конструкция устройства, поддерживающие температуру индуктивной катушки и ферромагнитного сердечника ниже критической.
7. Диссертантом получены 19 патентов США на конструкции и материалы индукционных люминесцентных ламп и методы контроля их параметров.
8. Результаты исследований включены в программы курсов «Источники оптического излучения», «Тенденции развития источников света и ПРА» и «Расчет и конструирование источников света» и легли в основу учебного пособия «Индукционные источники света» для бакалавров и магистров светотехнической специальности (Изд. дом МЭИ, 2010, 64 с.)
Достоверность полученных результатов
1. Измерения проводились на большом количестве экспериментальных образцов при широком варьировании конструктивных параметров вакуумных блоков и ВЧ индукторов с применением современного высокоточного измерительного оборудования.
2. По результатам исследований предложены, сконструированы и разработаны опытные образцы индукционных люминесцентных ламп, которые легли в основу промышленных изделий, светотехнические и эксплутационные параметры которых соответствуют таковым, полученным диссертантом в ходе исследований.
3. Результаты расчетов электрических и энергетических характеристик индукционных разрядов, проведенных диссертантом в рамках развитой им модели, находятся в хорошем согласии с экспериментальными данными.
Апробация работы и публикации
Список работ, в которых нашли свое отражение основные результаты диссертации, содержит 45 публикаций, в том числе одна монография, 20 статей в ведущих научно-технических журналах из списка ВАК и 19 патентов США. Материалы диссертации докладывались на отечественных и зарубежных конференциях и симпозиумах (International Symposium on Science and Technology of Light Sources, International Сonference on Phenomena in Ionized Gases, Международная научно-техническая конференция студентов и аспирантов и др.)
Структура диссертации
Диссертация состоит из введения, восьми глав и заключения. Общий объем диссертации (без Приложения) - 412 страниц машинописного текста, включающего 236 рисунков, 2 таблицы и список литературы из 247 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении диссертации обосновывается актуальность темы исследования, ставится ее цель, формулируются основные результаты и положения, выносимые на защиту.
В первой главе проводится анализ работ, посвященных исследованиям индукционных разрядов и дается краткая история развития индукционных люминесцентных источников света. Отмечаются работы Томсона, заложившего в 20-х годах ХХ века основы теории электромагнитного возбуждения разряда в газах и предложившего аналитические выражения, описывающие зажигание индукционного разряда, а также работы Таунсенда и Дональдсона, указавших на важную роль «электростатических» сил в зажигании и поддержании разрядов в газах. Обсуждаются работы Эккерта, создавшего в конце 60-х годов прошлого века на относительно низких частотах f = 800–10 000 Гц индукционный источник плазмы низкого давления в парах ртути в замкнутых разрядных трубках с железным кольцевым магнитопроводом. Подробно обсуждаются работы сотрудника фирмы General Electric Джона Андерсона, предложившего в конце 60-х годов три основных типа индукционных ламп: лампу трансформаторного типа, лампу с полостью и компактную люминесцентную лампу с кольцевым магнитопроводом и с инегрированным в базе лампы электронным пуско-регулирующим аппаратом (ЭПРА). Обуждаются работы советских специалистов
А.М. Троицкого и Д.Д. Юшкова, разработавших в начале 80-х годов ХХ века компактную индукционную люминесцентную лампу в сферической колбе Db = 8,5