Пленочные радиопоглощающие материалы, содержащие микро- и наночастицы наполнителя
На правах рукописи
РУМЯНЦЕВ ПАВЕЛ АЛЕКСАНДРОВИЧ
Пленочные радиопоглощающие материалы, содержащие микро- и наночастицы наполнителя
05.09.02 – электротехнические материалы и изделия
Автореферат диссертации на соискание ученой степени кандидата технических наук
Москва - 2013
Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Национальный исследовательский университет «МЭИ» на кафедре физики электротехнических материалов и компонентов и автоматизации электротехнологических комплексов.
Чепарин Владимир Петрович |
Научный руководитель:
Д.т.н., профессор
Официальные оппоненты:
Д.т.н., профессор, Дмитриев Александр Сергеевич
Зав. кафедрой Низких температур, Института тепловой и атомной энергетики (ИТАЭ) ФГБОУ ВПО «НИУ «МЭИ»
К.т.н., доцент, Безъязыкова Татьяна Григорьевна
Доцент кафедры ТиМ, факультета Технологий средств связи и биомедицинской электроники, СПбГУТ им. проф. М.А. Бонч-Бруевича
Ведущая организация:
Московский государственный технический университет радиотехники, электроники и автоматики.
Защита состоится «23» апреля 2013 г. в 15.00 час. на заседании диссертационного Совета Д 520.026.01 при ОАО "Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности" по адресу: 111024, г. Москва, Энтузиастов шоссе, 5, к. 908
С диссертацией можно ознакомиться в научно-технической библиотеке ОАО «ВНИИ КП»»
Автореферат разослан «_____» ________ 2013 г.
Ученый секретарь диссертационного совета
к.т.н., Овчинникова И.А.
Общая характеристика работы
Актуальность работы. Развитие СВЧ-устройств радиоэлектроники и энергетики, мощных энергетических установок приводит к тому, что возникающее при их работе электромагнитное излучение на частотах высших типов гармоник создает значительные помехи радиоэлектронной аппаратуре, работающей в СВЧ – области, и спутниковой связи. В связи с этим, проблема уменьшения помех и электромагнитной совместимости устройств становится актуальной. В работе предлагается использовать для этих целей новые композиционные магнитодиэлектрики на основе высокоанизотропных ферритов, в которых существует эффективное поле кристаллографической анизотропии. В таких материалах внутреннее поле анизотропии зависит от химического состава и вызывает явление естественного ферромагнитного резонанса (ЕФМР) в области СВЧ. Использование композиционных сред в СВЧ устройствах позволяет управлять электродинамическими параметрами в широком диапазоне частот. Отсутствие внешнего магнитного поля и использование композиционных сред позволяет создавать новые электротехнические материалы, обладающие способностью поглощения электромагнитного излучения и обеспечивающие существенное уменьшение помех паразитных электромагнитных колебаний в устройствах электротехники и электроэнергетике.
В работе исследована возможность управления частотной дисперсией комплексной магнитной проницаемости в полимерных композитах, наполненных полидисперсными магнитными порошками. Установлены закономерности изменения свойств радиопоглощающих композитов (РПК) в магнитных и электрических полях.
Рассмотрена возможность создания гетерогенных диспергированных наполнителей, состоящих из магнитных и электропроводящих компонентов, с целью получения ряда материалов, которые могут эффективно использоваться в частотном диапазоне 2-40 ГГц с поглощением ЭМИ не менее 12 дБ в температурном интервале -600 +1000 С в специальной, бытовой, медицинской технике и устройствах СВЧ- электроэнергетики.
Работа проводилась в соответствии с тематикой, предусмотренной научно-технической программой Минобразования России «Научные исследования высшей школы в области новых материалов», в рамках грантов Минобразования РФ, по государственным контрактам Минобразования РФ № «01.200.95.3121», «01.200.96.2471», «01.201.15.0806», «01.201.15.0812», «01.201.15.8670», «01.201.15.8677»
Цель и задачи работы. Целью работы является разработка новых радиопоглощающих покрытий (РПП) на основе композиционных магнитных материалов.
В соответствии с этим основными задачами работы являются:
- исследование влияния дисперсности ферритов на характеристики композиционных материалов на их основе;
- установление зависимостей магнитных и электрических свойств легированных ферритов от дисперсности ферритового наполнителя;
- экспериментальное изучение электродинамических и электрофизических характеристик композиционных материалов на основе высокодисперсных ферритов;
- влияние углеродных нанотрубок на свойства композитов на основе высокодисперсных ферритов с различным размером частиц порошка;
- исследование свойств композиционных материалов на основе ферритов-шпинелей с целью их дальнейшего использования в РПП;
- создание технологии синтеза гексагональных ферритов со структурой Y по керамической технологии для их использования в РПП;
- исследование электродинамических и электрофизических характеристик структуры типа Y;
- получение РПП на основе магнитодиэлектрических композиционных материалах различной конструкции.
- исследование влияния магнитного поля на формирование и свойства РПП на основе магнитных эластомеров.
Научная новизна:
- систематические исследования и анализ композиционных радиопоглощающих материалов (РПМ), наполненных высокодисперсными, высокочастотными гексаферритами дали возможность выявить новые закономерности, получить количественные оценки между различными свойствами композитов для диапазона частот 36-54ГГц;
- впервые синтезированы РПМ с углеродными нанотрубоками для диапазона частот 36-54ГГц. Установлены отличия влияния углеродных нанотрубок на величину поглощения электромагнитного излучения материала в зависимости от дисперсности наполнителя;
- изучено влияние углеродных нанотрубок на электродинамические параметры РПМ, содержащих феррошпинели;
- впервые рассмотрено влияние постоянного магнитного поля на процесс формирования РПП; установлена зависимость величины поглощения электромагнитного излучения сформированного покрытия;
- получены макеты РПП; изучены их электродинамические и электрофизические характеристики, позволяющие определить применение покрытий для решения конкретных технологических задач.
Практическая ценность полученных результатов:
- Получены данные о влиянии размеров частиц наполнителей гексагональных ферритов и ферритов-шпинелей на электродинамические и электрофизические параметры магнитодиэлектриков с целью дальнейшего выбора их практического применения при изготовлении покрытий;
- Получена зависимость влияния углеродных нанотрубок на свойства композитов при различных размерах частиц наполнителя феррита;
- Получены результаты синтеза гексаферрита структуры типа Y при различных температурах и исследованы электродинамические характеристики композиционного материала на его основе;
- Разработаны и изготовлены РПП для применения в диапазоне частот 36-54ГГц в;
- Разработана методика формирования РПП игловидной формы под действием постоянного магнитного поля и исследованы его частотные характеристики поглощения.
Апробация работы. Материалы диссертации докладывались наXVII международной конференции «Магнетизм, дальнее и ближнее спин-спиновое взаимодействие». Москва-Фирсановка, ноябрь 2009г.; на XV Международной научно-технической конференции студентов и аспирантов «Радиоэлектроника, электротехника и энергетика» Москва, февраль 2009г.; на XIII Международной конференции по «Электромеханике, электротехнологии и электротехническим материалам и компонентам»,ICEEE-2010, Крым, Алушта, сентябрь 2010г.; на XVIII Международной конференции «Электромагнитное поле и материалы». Москва-Фирсановка, 2010г, на Международной конференции «Функциональные материалы»ICFM`2011, октябрь 2011г., Крым, п.г.т. Партенит; на XIX Международной конференции «Электромагнитное поле и материалы». Москва-Фирсановка, ноябрь 2011г;на XIV Международной конференции по «Электромеханике, электротехнологии и электротехническим материалам и компонентам», ICEEE-2012, Крым, Алушта, сентябрь 2012г.
Основные результаты исследований опубликованы в следующих научно- исследовательских работах:
- по государственному контракту №01.200.95.0524 от 01.01.2009 по теме «Создание методов синтеза и исследование высокодобротных и высокоанизотропных сегнетоэлектрических и магнитных материалов для СВЧ-устройств»;
- по государственному контракту №01.200.95.0511 от 01.01.2009 по теме «Создание методов синтеза и исследование свойств новых радиопоглощающих электрорадиоматериалов, содержащих микро- и наночастицы»
- по государственному контракту №01.200.95.3121 от 01.01.2009 по теме «Разработка и исследование новых композиционных радиопоглощающих материалов, содержащих нано и микрочастицы оксидных соединений».
- по государственному контракту №01.200.96.2171 от 30.09.2009 по теме «Синтез и исследование композиционной многофункциональной керамики для высокодобротных СВЧ радиопоглощающих материалов, покрытий и резонаторов» в рамках федеральной целевой научно-технической программы 02.740.11.0404.
- по государственному контракту №01.201.15.0806 от 01.01.2011по теме «Исследование композитов на основе микро- и наночастиц легированных гексаферритов для СВЧ-устройств».
- по государственному контракту №01.201.15.0812 от 01.01.2011по теме «Создание и исследование многослойных пленочных структур, содержащих ультрадисперсные частицы ферримагнитных сред».
- по государственному контракту №01.201.15.8670 от 01.01.2011по теме «Композиционные сверхвысокочастотные материалы на основе микро и наночастиц ферримагнитных и сегнетоэлектрических сред».
Результаты выполненных исследований используются в учебном процессе ФБГОУ ВПО «НИУ «МЭИ» при подготовке бакалавров, специалистов и магистров по направлению 140600 «Электротехника, электромеханика и электротехнологии».
Личный вклад автора. Лично автором разработана методика измерения магнитных и диэлектрических спектров пленочных материалов в диапазоне частот 10МГц – 3ГГц на базе Agilent RF Impedance/Material Analyzer E4991A. Выявлены технологические параметры процессов механосинтеза порошковых высокочастотных гексаферритов, влияющие на параметры наполнителя. Получены частотные зависимости поглощения электромагнитного излучения РПМ. Проведены исследования магнитных и диэлектрических спектров РПМ. Проведен анализ влияния температуры синтеза на фазовый состав и характеристики гексаферрита со структурой типа-Y. Получены макеты РПП на основе высокодисперсных гексаферритов для снижения влияния паразитного электромагнитного излучения; исследованы параметры поглощения и отражения РПП.
На защиту выносятся следующие положения:
- результаты исследования влияния дисперсности высокочастотных гексаферритов структуры типа М на ФМР и характер кривых поглощения;
- результаты исследования электродинамических характеристик композиционных материалов с наполнителем в виде высокодисперсного порошка феррита-шпинели;
- результаты исследования влияния углеродных нанотрубок на на характеристики композитов с различной дисперсностью наполнителя;
- результаты по синтезу структуры типа Y;
- результаты исследования электрофизических характеристик РПП, представляющих многослойные пленочные структуры;
- кривые поглощения электромагнитного излучения для покрытия сформированного при действии постоянного магнитного поля.
Структура и объем работы. Настоящая диссертационная работа состоит из введения, шести глав, заключения, списка литературы и включает 130 страниц машинописного текста, 110 рисунков, 6 таблиц. Список литературы включает 97 наименований.
КРАТКОЕСОДЕРЖАНИЕРАБОТЫ
Во введении обоснована актуальность задач, решаемых в диссертационной работе, изложены цели и задачи исследований, сформулированы защищаемые положения, показаны научная новизна, практическая ценность работы, дана общая характеристика работы.
В первой главе проведен обзор РПМ и РПП, создаваемых в России и в ведущих иностранных государствах; дается анализ современных материалов, применяемых в радиопоглощающих покрытиях; дано обоснование применения ферримагнитных материалов в РПП; рассмотрены основные свойства ферритов применяемых в магнитодиэлектрических РПП; показана возможность применения ферритов для изготовления РПП в виде высокодисперсных порошков; дан обзор характеристик ферритов полученных методом механического диспергирования.
Анализ современных РПМ показал, что наиболее тонкие и широкополосные РПП создаются на основе магнитодиэлектрических композиционных материалов, в которых микрочастицы магнитного и диэлектрического составляющих распределены в полимерном связующем.
Применение в РПП ферримагнитных материалов позволяет значительно повысить поглощение ЭМИ материала, создать широкополосное РПП при использовании смеси ферритов, уменьшить толщину.
Диспергирование ферритов обусловлено технологическими факторами процесса формирования РПП. Достаточно простыми и экономически целесообразными являются методы механической обработки порошковых ферритов.
Анализ свойств высокодисперсных ферритов показал, что изменяя размеры, форму и строение наночастиц при механическом диспергировании можно в определенных пределах управлять магнитными характеристиками материалов на их основе. Увеличение времени механического диспергирования приводит к уменьшению интенсивности пика ферромагнитного резонанса от исходной высокоанизотропной фазы, что может сопровождаться возникновением и увеличением интенсивности дополнительного резонанса вызванного возникновением при механической обработке шпинельной и аморфной фазы, а так же частиц перешедших в суперпарамагнитное состояние. Наблюдается смещение частоты естественного ферромагнитного резонанса (ЕФМР).
Во второй главе приводится методика эксперимента. В работе исследовались гексагональные ферриты бария М, Y и Z – типа изготовленные по керамической технологии, а также шпинели на основе никель-цинкового феррита.
Исследование микроструктуры ферритового порошка проводилось при помощи растрового электронного микроскопа CarlZeissLeo 1420 (Германия).
Рентгеновские спектры порошков измерялись на CuK излучении установки Rigaku D/max-RC.
Измерения удельной поверхности ферритовых порошков и гранул проводилось методом БЭТ (адсорбции азота) на приборе TriStar 3000V6.03 A.
Полученные ферриты в виде ультрадисперсного порошка использовались как наполнитель для композиционного материала. В качестве модели связующего применялся парафин.
Из полученного композиционного материала формировались образцы для измерений магнитной, диэлектрической проницаемостей и tg() на частотах 0,01-3 ГГц или образцы для измерения поглощения/отражения электромагнитного излучения (ЭМИ) в диапазоне частот 8-18 ГГц.
Измерение магнитных и диэлектрических спектров композиционных материалов на основе ферритов проводились на приборе Agilent E4991 ARF Impedance/Material Analyzer.
Измерение СВЧ параметров композиционных материалов проводилось волноводным методом с согласованной нагрузкой.
Измерение температурной зависимости намагниченности ферритов по методу Фарадея проводилось на сферах, выточенных из плотно спеченных ферритов. Измерения температурной зависимости намагниченности ферритов проводилось в неоднородном магнитном поле с напряженностью 4.104А/м.
В третьей главе приведены результаты исследования электродинамических и электрофизических характеристик РПМ на основе порошков гексаферритов; показано влияние механической обработки ферритов на параметры композитов; рассмотрены свойства РПМ при добавлении углеродных нанотрубок.
Для определения влияния дисперсности на частотные характеристики поглощения исследовались три состава феррита М-типа с различной степенью легирования ионами скандия, охватывающие диапазон частот от 8 до 56 ГГц (рис. 1).
Анализ полученных результатов показал, что уменьшение среднего размера частиц практически не оказывает влияния на частоту естественного ферромагнитного резонанса, что, по-видимому, связано с незначительным вкладом поверхностной анизотропии в эффективное значение поля магнито-кристаллической анизотропии.
Увеличение поверхностного слоя при механомодификации приводит к уменьшению резонирующего объёма частиц и, как следствие, к снижению поглощения ЭМИ.
Для исследования влияния дисперсности частиц феррита менее 0,3мкм на частотные характеристики поглощения произведено измельчение в высокоэнергетической планетарной мельнице со скоростью 850-900 об/мин. В качестве объекта исследования выбран гексаферрит BaSc0.2Fe11.8O19, имеющий частоту ЕФМР в области 41ГГц (рис. 2).
Интенсивное измельчение гексаферрита приводит к изменению структуры поверхности частиц наполнителя и, как следствие, уменьшению объема частицы, что ведет к снижению мощности поглощаемой энергии ЭМИ. Так же наблюдается небольшое понижение частоты ЕФМР.
Повысить эффективность поглощения можно добавлением в состав композита углеродных нанотрубок (рис. 3).
![]() |
![]() |
Рисунок 3 – Влияние углеродных нанотрубок на поглощение ЭМИ |
Увеличение поглощения электромагнитного излучения связано с повышением диэлектрических потерь. Магнитные потери при введении углеродных нанотрубок практически не изменяется (рис 4.).
![]() |
![]() |
Рисунок 4 – Влияние УНТ на диэлектрические потери |