Научное обоснование разработки средств ликвидации скоплений газа в горных выработках методом пульсирующей вентиляции
Среднеарифметическая погрешность 19,0 %
Сравнительная оценка эффективности применения двух модификаций установок (рис. 7) в различных условиях (П1 испытывался в более сложных для разрушения местного скопления параметрах) показала, что время разрушения установкой П1 составило 8-9 мин, а установка с механическим приводом не смогла разрушить скопления. Расчетное время разрушения в данных условиях ГВиПС при режиме пульсирующей вентиляции с применением выражения (10) составило 2,4 мин и 5,8 мин, что соответствует показателям эксперимента. Учитывая, что время разгона установки П1 до уровня оптимальных показателей разрушения составляет 1,52 мин, несоответствие результатов теоретических и натурных исследований является незначительным.
Для исследования процесса влагопереноса в модели ГВиПС при пульсирующем движении воздуха проводилось сравнение влияния стационарного и пульсирующего воздушных потоков на влаго- и теплоперенос. Для этого эксперименты проводились в двух режимах: с работающим пульсатором (режим пульсирующего движения воздушного потока) и работающим вентилятором; с выключенным пульсатором (стационарным режимом движения воздушного потока) и работающим вентилятором. Полученные результаты свидетельствуют о более быстром высыхании образца при пульсирующем режиме движения воздуха, что указывает на большую интенсивность влагопереноса по сравнению со стационарным движением воздушного потока, а результаты указывают на увеличение интенсивности теплообмена при пульсирующем движении воздуха по сравнению со стационарным.
Выполненные исследования по оценке работоспособности и эффективности новой модели пульсатора и возможности применения ПВ для ликвидации и предупреждения ЧС по газовому фактору, а также по обеспечению охлаждения поверхностей и испарению с них влаги показали возрастание интенсивности тепло-массопереноса и перспективность развития научного направления «пульсирующая вентиляция».
Выполненные исследования на гидромодели позволили подтвердить результаты математического моделирования и в целом предложенный подход к описанию процесса газопереноса в ГВиПС по параметрам подобия.
Проведенный комплекс исследований позволил разработать рекомендации по рациональному применению режима пульсирующей вентиляции, наиболее важными из которых являются следующие:
- Для оценки степени угрозы возникновения местных скоплений газов и обеспечения эффективными мероприятиями необходимо выполнять категорирование условий возникновения скоплений метана в ГВиПС по степени опасности согласно разработанной классификации.
- Особое внимание необходимо обращать на ГВиПС с интенсивным газовыделением и малыми скоростями движения воздуха в них.
- В выработках, имеющих большое сечение (более 12 м3), более склонных к формированию местных скоплений газов, необходима организация специального режима контроля (т.е. более частая проверка) наличия скоплений газов и своевременного принятия мер по их предупреждению или ликвидации.
- Режим пульсирующей вентиляции следует применять в двух подрежимах: профилактическом - т.е. при СМ3 ПДК, позволяющем предотвратить формирование местного скопления, и предаварийном - т.е. при СМ3 > ПДК, позволяющем разрушить сформировавшееся местное скопление газа;
Также разработаны рекомендации по рациональному применению средств генерации режима пульсирующей вентиляции, наиболее важными из которых являются следующие:
- Генератор РПВ необходимо подбирать по оптимальному показателю расхода воздуха, который следует определять согласно разработанной методике расчета оптимального (минимально необходимого) расхода воздуха пульсатора.
- Оптимальный расход воздуха пульсатора и оптимальную частоту импульсов 68 Гц следует задавать специальными устройствами – углами поворота разгонных лопаток в узле аэродинамического отбора мощности и сечениями выпускных патрубков.
Выполненные расчеты показали, что экономический эффект от внедрения установок «пульсатор» П1, П2, П3 на угольных предприятиях будет исчисляться сотнями миллионов рублей и на несколько порядков превышать затраты на годовое содержание установки П1 с учетом того, что годовая стоимость эксплуатации одной установки составит для уровня цен и зарплаты 2005-2006 гг. порядка 400–450 тыс. руб. в год. Таким образом, экономический эффект на примере инцидента в лаве 822-юг пласта "Четвертого" шахты «Воркутинская» ОАО «Воркутауголь» от 13.01.02 г. при внедрении установки «Пульсатор П1», соответственно составит 308 млн. руб. с учетом всех составляющих затрат на момент ликвидации аварии и консервации участка. Кроме того, важно отметить, что аварийные участки на длительный срок выпадают из эксплуатации.
Выполненный объем теоретических, конструкторских и экспериментальных изысканий по решению комплекса задач по научному обоснованию метода пульсирующей вентиляции, разработке модели процесса газопереноса при режиме пульсирующей вентиляции, обоснованию и разработке средств предупреждения и ликвидации ЧС по газовому фактору в сочетании с полученными практическими результатами в естественных условиях газообильных ГВиПС позволяют утверждать, что возможно существенное повышение уровня безопасности труда на предприятиях горного профиля.
Заключение
В диссертации, являющейся научной квалификационной работой, изложено решение актуальной научной проблемы развития основ процесса газопереноса при пульсирующей вентиляции и разработки на основе выявленных закономерностей средств аэродинамического предотвращения и ликвидации образования местных скоплений вредных и (или) опасных газов для предприятий горного профиля, внедрение которых снижает риск возникновения ЧС, обеспечивает безопасность труда как в штатных, так и в аварийных ситуациях и имеет важное социально-экономическое значение.
Основные научные и практические результаты, полученные лично автором, выводы и рекомендации работы заключаются в следующем:
- Разработана классификация условий возникновения местных скоплений газа на основании анализа большого числа вспышек и взрывов газа и причин их появления, позволяющая оценивать угрозу возникновения ЧС и обоснованно принимать решения о необходимости ликвидации негативного воздействия газового фактора на предприятиях горного профиля.
- Доказана возможность ликвидации ЧС при реализации аэрогазодинамического разрушения местных и слоевых скоплений газа при режиме пульсирующей вентиляции на основе теоретического обоснования его параметров и результатов многолетних шахтных экспериментов.
- Получено описание процесса аэродинамического предупреждения и ликвидации местных скоплений опасных и (или) вредных газов при пульсирующем режиме вентиляции в виде критериального уравнения, включающего числа Рейнольдса (Re), Эйлера (Eu), Фруда (Fr), Галилея (Ga) и Архимеда (Ar), показатели которых учитывают условия формирования скоплений динамически активных газов; из представленных чисел определяющими являются числа Рейнольдса (Re), Эйлера (Eu) и Архимеда (Ar).
- Выявлены определяющие параметры аэрогазодинамического процесса предупреждения образования и ликвидации местных скоплений опасных и (или) вредных газов при режиме пульсирующей вентиляции. Установлено, что ими являются средние значения концентрации газа в поступающей на загазированный участок и в исходящей с загазированного участка воздушной струе, максимальное значение концентрации газа в местном скоплении газа, расход воздуха в выработке и в генераторе импульсов давления (пульсатора), гидравлический диаметр выработки, разность значений статического давления у пульсатора и в местном скоплении, скорость воздушного потока и расстояние от пульсатора до местного скопления газа.
- Разработана математическая модель газопереноса при РПВ в ГВиПС, отличающаяся от других моделей тем, что в ней учтено совокупное влияние средних значений концентрации газа в поступающей на загазированный участок и в исходящей с него воздушной струе, максимальное значение концентрации газа в местном скоплении газа, расход воздуха в выработке и в генераторе импульсов давления (пульсатора), гидравлический диаметр выработки, разность значений статического давления у пульсатора и в местном скоплении, скорость воздушного потока и расстояние от пульсатора до местного скопления газа. Доверительный интервал вычислений - 98,5.
- Выявлены зависимости влияния технических параметров пульсатора на время разрушения местных скоплений опасных газов при пульсирующем режиме вентиляции. Подтверждено, что оптимальной частотой импульсов для разрушения скоплений метана является диапазон от 6 до 8 Гц, а расход воздуха пульсатора следует разделить по технологическому признаку сечения выработки на 3 диапазона: до 0,5 м3/с, от 0,51 до 1,5 м3/с, более 1,5 м3/с.
- Установлены закономерности влияния определяющих параметров системы газовоздушный поток - пульсатор» на время ликвидации местных скоплений опасных газов при пульсирующем режиме вентиляции ГВиПС.
- Разработана методика определения рациональных значений определяющих параметров с учетом конкретных условий системы «горная выработка - газовоздушный поток - пульсатор», при которых невозможно образование скоплений газа и ликвидируются существующие при пульсирующей вентиляции.
- Установлено, что применять метод газодинамического предупреждения и ликвидации местных скоплений опасных газов при пульсирующем режиме вентиляции целесообразно при двух режимах – предаварийном (разрушение образовавшихся скоплений газа) и эксплуатационном (предупреждение образования скоплений газа). При этом эксплуатационным следует считать режим, когда СМ3 имеет значение менее СПДК
- Определены оптимальные режимы генерации пульсирующей вентиляции и технические параметры пульсаторов, на основе которых впервые научно обоснованы и разработаны рекомендации по применению генераторов РПВ в ГВ.
Результаты исследований отражены в следующих публикациях автора:
1. Филин А.Э. и др. Разрушение скоплений метана методом пульсирующей вентиляции в условиях шахты «Заполярная» ОАО «Воркутауголь»// Горный информационно-аналитический бюллетень – 2000. – № 7. – С. 24-25.
2. Филин А.Э. и др. Исследование состояния проветривания коммуникационных коллекторов в г. Москве// Горный информационно-аналитический бюллетень – 2000. – № 7. – С. 61-63.
3. Филин А.Э. Проблемы метанобезопасности угольных шахт с точки зрения скоплений метана// Проблемы большого города: Сб. науч. работ. – М: МГГУ, 2001. – С. 43-44.
4. Филин А.Э., Калинин А.Р. Анализ состояния автоматизации мониторинга воздуха при использовании подземного пространства // Проблемы большого города: Сб. науч. работ. – М.: МГГУ, 2001. – С. 28-30.
5. Филин А.Э., Черненко А.Ю. Перспективы развития области применения пульсирующей вентиляции // Горный информационно-аналитический бюллетень – 2002. – № 6. – С. 97-98.
6. Калинин А. Р., Филин А. Э. Инвестиции как экономический стимул использования подземного пространства // Проблемы большого города: Сб. науч. работ. – М.: МГГУ, 2002. – С. 24-26.
7. Филин А.Э., Калинин А.Р. Экономические и технологические перспективы применения пульсирующей вентиляции в условиях подземного пространства // Проблемы большого города: Сб. науч. работ. – М.: МГГУ, 2003. – С. 53-54.
8. Филин А.Э. и др. Результаты шахтных испытаний установки «пульсатор П1» на шахте «Воркутинская» ОАО «Воркутауголь»// Горный информационно-аналитический бюллетень – 2004. – № 8. – С. 287-291.
9. Филин А.Э. Анализ причин и роста травматизма по газовому фактору// Горный информационно-аналитический бюллетень – 2004. – № 8. – С. 294-296.
10. Филин А.Э. Проблемы автоматизации обеспечения безопасности горных предприятий// Горный информационно-аналитический бюллетень – 2004. – № 8. – С. 297-299.
11. Калинин А. Р., Филин А.Э. Основные этапы применения системы экономического стимулирования при технологическом освоении подземного пространства// Эколого-экономические проблемы горного производства: Сб. науч. работ. – М.: МГГУ, 2004. С. 25-27.
12. Филин А.Э. Исследование влагопереноса на модели горной выработки при пульсирующем режиме проветривания// Эколого-экономические проблемы горного производства: Сб. науч. работ. – М.: МГГУ, 2004. С. 75-77.
13. Филин А.Э. Анализ результатов исследования влагопереноса в условиях модели горной выработки при пульсирующей вентиляции// Эколого-экономические проблемы горного производства: Сб. науч. работ. – М.: МГГУ, 2004. С. 77-79.
14. Калинин А. Р., Филин А. Э. Экономические инструменты развития горных предприятий в условиях мегаполиса // Эколого-экономические проблемы природопользования в горной промышленности: Сб. науч. работ. – Шахты: ЮРОАГН РФ, 2004. – Вып. 7. – С. 53-54.
15. Филин А.Э. Анализ исследований МГИ-МГГУ на гидромоделях// Эколого-экономические проблемы природопользования в горной промышленности: Сб. науч. работ. – Шахты: ЮРОАГН РФ, 2004. – Вып. 7. – С. 23-25.
16. Филин А.Э. Перспектива применения пульсирующей вентиляции в условиях газообильных шахт// Народное хозяйство республики Коми: Сб. науч. трудов. – Сыктывкар: СПК, 2005. – Том 3. – С. 131-136.
17. Филин А.Э. Повышение транспортирующих свойств воздушной струи методом пульсирующей вентиляции// Тезисы VII Международной научно-практической конференции «Энергетическая безопасность России. Новые подходы к развитию угольной промышленности»: Сб. науч. трудов. – Кемерово: КГТУ, 2005. – С. 88-90.
18. Филин А.Э., Зубков К.Б. Разработка электронной справочно-информационной программы по аэрологии и охране труда// Тематическое приложение «Безопасность» к Горному информационно-аналитическому бюллетеню – 2005. – С. 61-65.
19. Филин А.Э., Смирнов С.С. Исследование городских коммуникаций и инженерных сетей по пылевому фактору// Тематическое приложение «Безопасность» к Горному информационно-аналитическому бюллетеню – 2005. – С. 265-271.
20. Малашкина В.А., Филин А.Э. Исследование факторов, влияющих на газодинамический режим разрушения слоевых и локальных скоплений метана в подземных горных выработках угольных шахт.// Тематическое приложение «Метан» к Горному информационно-аналитическому бюллетеню – 2005. – С. 207-223.
21. Филин А.Э. Классификация горных выработок по степени опасности возникновения скоплений метана.// Тематическое приложение «Метан» к Горному информационно-аналитическому бюллетеню – 2005. – С. 223-229.
22. Филин А.Э. Механизм разрушения скоплений метана в горных выработках.// Тематическое приложение «Метан» к Горному информационно-аналитическому бюллетеню – 2005. – С. 229-238.
23. Филин А.Э., Рыбкина С.Т. Факторы влияющие на возникновение чрезвычайных ситуаций// Тематическое приложение «Безопасность» к Горному информационно-аналитическому бюллетеню – 2006. – С. 192 -195.
24. Филин А.Э., Зубков К.Б. Разработка программы «Сигнализатор» для инженеров по технике безопасности и охране труда// Тематическое приложение «Безопасность» к Горному информационно-аналитическому бюллетеню – 2006. – С. 182 -186.
25. Филин А.Э. Особенности газопереноса при пульсирующей вентиляции в условиях газообильных угольных шахт// Тематическое приложение «Аэрология» к Горному информационно-аналитическому бюллетеню – 2006. – С.69-84.
26. Филин А.Э. Рациональные параметры применения метода пульсирующей вентиляции в условиях газообильных горных выработок// Тематическое приложение «Аэрология» к Горному информационно-аналитическому бюллетеню – 2006. – С. 85-89.
27. Филин А.Э. Метод расчета оптимальных параметров расхода воздуха в выработке и расхода устройства пульсатора для дезинтеграции скоплений метана в горных выработках угольных шахт. – г. Тула: Известия ТулГУ. Естественные науки. Серия: «Науки о земле», 2007. – Вып. 2– С. 301-305.
28. Филин А.Э. Повышение эффективности предотвращения и ликвидации скоплений газа в горных выработках. – г. Люберцы: ФГУП «ПИК ВИНИТИ», 2008. – С. 1-272.
29. Филин А.Э. Об оценке степени опасности возникновения местных скоплений газа в горных выработках и подземных сооружениях (на примере метана). – Уголь, 2008. – Вып. № 9– С. 10-11
30. Филин А.Э. Средства повышения эффективности проветривания газообильных горных выработок. – Горная промышленность, 2008. – Вып. №5 – С. 56.
31. Филин А.Э., Кобылкин А.С., Слюнин М.А. Автоматизированная информационно-аналитическая система мониторинга состояния охраны труда и промышленной безопасности в организациях// Отдельный выпуск «Безопасность» Горного информационно-аналитического бюллетеня – 2008. – Вып. №6 – С. 177-180.
32. Ушаков К.З., Филин А.Э., Сребный М.А., Азерская К.Ф., Соломахин А.Н. Устройство для проветривания горных выработок Пульсатор П1. Патент на изобретение № 2193666 от 27.11.02 г. –: М.: БИПМ, 2002 – № 33, часть 2. С. 289.
33. Филин А.Э., Соломахин А.Н. Устройство для проветривания горных выработок Пульсатор П2. Патент № 2301341 от 20.06.07г. – М.: БИПМ, 2007 – № 17, часть 3. С. 624.