Интенсификация физико-химических процессов свч-энергией в регенерационной системе жизнеобеспечения экипажа космического корабля
Из таблицы 4 следует, что в режиме выделения диоксида углерода (99°C) при подводимой СВЧ-мощности 410 Вт на нагрев ЖРП затрачивается 250 Вт.
При постоянном расходе раствора функция температуры ЖРП, поглощенной СВЧ-мощности ЖРП и подводимой к раствору СВЧ-мощности от тока магнетрона, носит линейный характер и монотонно возрастает. КСВН при этом не превышает допустимого значения для этого типа генератора в 3 единицы за исключением режима, соответствующего току магнетрона 300 мА. Этот режим характеризуется интенсивным кипением ЖРП и газовыделением, т.е. наиболее неблагоприятными диэлектрическими характеристиками, влияющими на согласование этой среды (ЖРП) с ЭМП. Этот факт указывает на необходимость совершенствования СВЧ- устройства для более полного поглощения ЭМП раствором ЖРП. Проведенные исследования позволяют сделать основной вывод о том, что СВЧ-энергия может эффективно использоваться для нагрева раствора МЭЭДА при десорбции из него диоксида углерода. Применение объемного бесконтактного СВЧ-нагрева обеспечивает сокращение времени нагрева ЖРП, что приводит к снижению энергозатрат на процесс десорбции.
Тепловая безынерционность ввода СВЧ-энергии в ЖРП обеспечивает возможность регулирования выхода диоксида углерода из него, что позволяет управлять этим процессом для дозированной подачи диоксида углерода в узел его переработки с постоянной скоростью.
В следующем разделе главы приведена разработка метода, устройства и технологии регенерации твердого аккумулятора водорода.
Для проведения исследований сорбции-десорбции водорода был использован сплав-накопитель водорода LaNi5 с легирующими элементами в виде Ce, Mn и Cu. Исследования проводились с использованием разработанного в ГНЦ РФ-ИМБП РАН патрона для целей регенерации водорода. Патрон представляет собой цилиндр из нержавеющей стали с фланцами, на внешней поверхности которого выполнена двухзаходная радиальная резьба. В одну из канавок была уложена медная трубка диаметром 10 мм внатяг (с нагревом газовой горелкой) для плотного прилегания к корпусу. В другую - через стеклоткань нихромовая проволока для нагрева корпуса патрона. Эти элементы конструкции были укрыты асбестом.
Трубка с патрубком для подачи и вывода водорода перфорирована и обтянута стеклотканью для предотвращения уноса интерметаллида. В патроне имеется карман для размещения термопары.
Основной целью экспериментальных исследований являлось получение первичной информации о принципиальной возможности использования сплава-накопителя водорода в СЖО, а точнее – в системе обеспечения газового состава для поглощения и безопасного хранения водорода, выделяемого электролизером.
Постановочные эксперименты показали высокую активность интерметаллида в начальный период (первые 120 с) сорбции водорода. При этом интерметаллид нагревался до температуры 80-90°С, что послужило побудительной причиной для проведения процесса сорбции водорода при начальной температуре 100°С, не дожидаясь полного остывания интерметаллида после десорбции. Этот прием позволил сгладить сорбционный процесс и сократить время между циклами.
Экспериментальные исследования сорбции водорода интерметалллидом проведены при давлении 0,1; 0,2 и 0,3 ати и не должны были превышать 0,5 ати. Ограничение по давлению наложено предельными условиями выделения водорода из электролизера "Электрон-В", функционирующего в настоящее время на МКС.
График процесса десорбции водорода отображен на рис. 8.
Рис. 8. Параметры десорбции водорода, сорбированного при давлении 0,2 ати
1 – температура интерметаллида; 2 – объем выделившегося водорода; 3 – скорость выделения водорода; 4 – давление водорода.
Момент выделения водорода начинается с 15 мин. и продолжается по 40 мин., пока давление водорода (кривая 4), обеспечивает заданный расход газа. В этом же интервале времени количество выделившегося водорода (кривая 2) монотонно возрастает (по 40 мин.), а затем спадает в соответствии со снижением давления. Относительно постоянный расход водорода (кривая 3) осуществляется в течение 25 мин. и соответствует среднему расходу газа 2,0 л/мин. Технологические параметры процесса десорбции водорода поддерживаются постоянным и монотонным ростом температуры интерметалллида, выраженные кривой 1.
Проведенные экспериментальные исследования и их результаты позволяют сделать заключение о целесообразности использования сплава-накопителя водорода как неотъемлемой части системы жизнеобеспечения нового поколения.
В заключительном разделе этой главы приведена разработка метода, устройства и технологии СВЧ-обеззараживания и нагрева воды в потоке.
Метод реализован путем использования оконечного коаксиального СВЧ-устройства для нагрева воды в потоке, в котором поочередно применен цилиндрический и экспоненциальный канал для прохода воды. На рис. 9 приведена конструкция СВЧ-устройства с экспоненциальным каналом.
Рис. 9. Конструкция СВЧ-устройства с экспоненциальным каналом
1 – волновод; 2 – внутренний проводник коаксиала; 3 – внешний проводник коаксиала; 4 – конус; 5 – канал для прохода жидкости; 6,7 – гайка со штуцером; 8 – накидная гайка; 9 – втулка; 10 – заглушка; 11 – винт; 12,13 – резиновое кольцо; 14 - настроечный винт.
Сравнение осуществлено по поглощенной водой СВЧ-мощности (Wп,Вт), температуре воды и гибели микробов (t,°С), ее расходу (Q,л/ч), времени пребывания воды в зоне СВЧ-воздействия (,с), КСВН, биоконтролю. Сисх = 106 КОЕ/мл.
Таблица 5
Технологические параметры процесса нагрева воды, зараженной синегнойной палочкой (Pseudomonas aeruginosa), в СВЧ-устройстве с различной формой канала
цилиндрический канал | экспоненциальный канал | |||||||||||||||
t, °C | Q, л/ч | Wп, Вт | КСВН | , с | Сост, КОЕ/мл | Q, л/ч | Wп, Вт | КСВН | , с | Сост, КОЕ/мл | ||||||
80 | 6,96±0,40 | 515±21 | 4,0 | 5,6 | 0 | 9,42±0,16 | 639±11 | 2,6 | 14,9 | 0 | ||||||
70 | 9,96±0,47 | 623±30 | 2,8 | 3,9 | 0 | 11,34±0,17 | 627±6 | 2,7 | 12,4 | 0 | ||||||
65 | 10,98±0,53 | 624±27 | 2,8 | 3,5 | 0 | 12,66±0,10 | 619±6 | 2,8 | 11,1 | 0 | ||||||
60 | 12,42±0,66 | 632±24 | 2,7 | 3,1 | 103±102 | 14,22±0,09 | 621±4 | 2,8 | 9,9 | 0 | ||||||
55 | 13,80±0,58 | 626±28 | 2,7 | 2,8 | 104±103 | 16,38±0,08 | 624±4 | 2,8 | 8,6 | 34±29 | ||||||
50 | 15,72±0,98 | 617±24 | 2,8 | 2,5 | 105±104 | 19,92±0,09 | 641±3 | 2,6 | 7,1 | 104±2.103 |
Показано, что в экспоненциальном канале происходит выравнивание поглощенной СВЧ-мощности во всем интервале температуры, снижение энергозатрат и температуры обеззараживания, увеличение производительности (см. рис. 10, табл. 5).
Рис. 10. Технологические параметры процесса СВЧ-нагрева воды, зараженной вегетативными формами микроорганизмов (экспоненциальный канал)
1 - Wп; 2 - t; 3 - ; 4 - КСВНпас; 5 - КСВНэкс.
знак - - означает отсутствие микроорганизмов в воде;
знак ± - означает наличие микроорганизмов в воде ниже 100 КОЕ/мл;
знак + - означает наличие микроорганизмов в воде выше 100 КОЕ/мл.
Известно, что одним из ответственных этапов при реализации длительных космических полетов (включая и полет на Марс) является предстартовый период. В комплекс мероприятий в этот период входит и обеспечение инфекционной безопасности как основного и резервного экипажей, так и специалистов комплексной экспедиции, непосредственно контактирующих с членами экипажей
На космодроме "Байконур" совместно с НИИХИММАШ была смонтирована двухконтурная, опытная установка водоподготовки с СВЧ-стерилизацией и нагревом питьевой воды в устройстве с плоским каналом (см. рис. 11).
Рис. 11. Конструкция проходного СВЧ-устройства с плоским каналом
1 – канал для прохода водной среды; 2 – волновод; 3 – запредельное устройство; 4 – штуцер. S – высота канала; L – ширина канала.
Процесс приготовления питьевой воды осуществлялся по следующей технологической схеме: водопроводная (хозяйственная) вода из магистрали подавалась в дистиллятор, из которого со скоростью 22-25 л/ч сливалась в накопительную емкость до заполнения; затем в накопительную емкость вводился раствор ионного серебра с учетом конечной концентрации 0,3-0,5 мг/л питьевой воды (первый контур); после этого в эту же емкость вводился минерализатор "Аквасоль" в виде рассола, предварительно доведенного до кипения в микроволновой печи "Электроника"; на заключительном этапе водоподготовки вода механически перемешивалась и выстаивалась, после чего переливалась в емкость, расположенную в холодильнике, и использовалась для питья как комнатной температуры, так и охлажденной.
Во втором контуре вода после дистиллятора также сливалась в накопительную емкость с добавлением "Аквасоли", но раствор ионного серебра вводился на порядок меньше, чем в первом контуре, из расчета 0,03-0,05 мг/л питьевой воды. После перемешивания и выстаивания питьевая вода дополнительно подвергалась СВЧ-воздействию в момент перекачки ее из накопительной емкости в емкость в холодильнике. В этом контуре могла использоваться как горячая вода, вода после теплообменника комнатной температуры, а также охлажденная из холодильника для питья и приготовления напитков.
Дополнительно во втором контуре были проведены исследования по СВЧ-обеззараживанию воды в потоке, контаминированной аналогом вирусной инфекции фагом mS-2. Отбор проб на анализ производился при постоянной температуре воды 80°С.
Результаты анализов, проведенных Центральной научно-исследовательской лабораторией лечебно-оздоровительного объединения при кабинете министров СССР, показали высокую эпидемиологическую безопасность питьевой воды по вирусному компоненту биологического фактора.
Решением Межведомственной Государственной комиссии приготовленная в установке питьевая вода была рекомендована для употребления в предстартовый период основным и резервным экипажами экспедиций на орбитальный комплекс "МИР" с ЭО-7 по ЭО-15, включая космонавтов из Японии, Англии, Франции.
В главе 4 дана оценка схемы совместной работы узлов и блоков регенерационной физико-химической системы жизнеобеспечения с использованием СВЧ-энергии.
Рассмотрен вариант системы, содержащей в общем виде жилой отсек, систему очистки от диоксида углерода и вредных микропримесей, концентратор диоксида углерода, систему переработки диоксида углерода и водорода, блок электролитического разложения воды, систему регенерации твердых и жидких отходов, сборник питьевой воды, сборник метаболической воды и сборник отходов (Гришаенков Б.Г., 1975).
Общими с функционирующей на МКС СЖО являются практически все узлы и блоки системы за исключением системы переработки диоксида углерода и водорода и концентратора диоксида углерода. Из этого следует, что для создания варианта максимально замкнутой СЖО необходимо разработать недостающие звенья этой системы.
В такую систему для согласования взаимодействия материальных потоков между блоком электролитического разложения воды и системой переработки диоксида углерода и водорода дополнительно введен аккумулятор водорода. Такая компоновка узлов и блоков позволяет в необходимый для этого момент времени направить диоксид углерода и водород в систему их переработки с целью получения воды.
Другой вариант системы предусматривает использование для переработки диоксида углерода и водорода двухстадийный процесс Боша по разрядно-каталитической схеме. Для реализации первой стадии (гидрирования диоксида углерода) используется тлеющий или комбинированный разряд. В зависимости от условий жизнедеятельности и количества членов экипажа может использоваться либо тлеющий разряд, либо его комбинация с СВЧ-разрядом. Во второй стадии с получением углерода может применяться железо-кобальтовый катализатор. Поддержание температуры катализатора (400-500оС) предлагается осуществлять потоком нагретых в первой стадии смеси газов.
К неудобствам этого двухстадийного процесса относится строгое соблюдение состава исходных газов – диоксида углерода и водорода. Они не должны содержать инертных примесей; мольное соотношение водорода к диоксиду углерода должно отвечать стехиометрии итогового уравнения, т.е. VH/VCO
=2.
Нарушение любого из этих условий приведет к накоплению в циркуляционном контуре инертного газа или одной из компонент (диоксида углерода или водорода), в результате чего производительность будет непрерывно уменьшаться и, в конечном итоге, упадет до нуля.
Еще одной проблемой данного процесса является удаление образующегося углерода из замкнутой циркуляционной газовой системы, что сводит до минимума использование его в реальной системе.
Этот вариант системы не исключает проведение только стадии гидрирования диоксида углерода с удалением за борт КК оксида углерода и водорода.
В следующем варианте системы предлагается исключить вторую стадию с образованием углерода и ограничиться первой стадией процесса Боша – гидрированием диоксида углерода. Блок-схема системы показана на рис. 12.
СО2 из системы очистки
Концентратор СО2 в систему очистки
СО2
О2 в жилой отсек Н2О метаболическая
О2 в жилой отсек СО2 СО2
О2
О2
СО2,Н2,СО СО2,Н2
Н2 Аккумулятор Н2 Дожигатель Сорбер
Н2ОН2+1/2О2 Н2 СО2+Н2=СО+Н2О СО Н2
Н2О
Н2
Рис. 12. Блок-схема системы с гидрированием диоксида углерода и дожиганием оксида углерода (остальные узлы и блоки системы жизнеобеспечения условно не показаны)
Схема этого варианта системы состоит из следующих основных узлов и блоков: электролизера; аккумулятора водорода; плазмотрона для переработки диоксида углерода и водорода в комбинированном СВЧ- и тлеющем разряде (стадия гидрирования); дожигателя оксида углерода на палладиевом катализаторе; поглотителя водорода из газовой смеси. В этой блок-схеме предполагается дополнительно использовать систему резервирования кислорода, которая условно обозначена в этой схеме как адсорбер кислорода (Смирнов И.А. и др., 2008). В целом эта система состоит из электрохимического генератора и батареи аппаратов – адсорбционных аккумуляторов кислорода. В этой системе кислород получают от электрохимического генератора, после которого основная часть кислорода поступает в жилой отсек, а неиспользованная часть подается в адсорбционный аккумулятор кислорода, заполненный специальным поглотителем. Кислород при этом аккумулируется с небольшим избыточным давлением и в количестве, значительно большем, чем в баллоне под давлением. Учитывая, что в предлагаемом варианте системы уже присутствует электролизер, представляется целесообразным от системы получения и резервирования кислорода использовать только адсорбционный аккумулятор кислорода.
Процесс переработки диоксида углерода и водорода по предлагаемой блок- схеме осуществляется в два этапа. Первый этап включает в себя процесс аккумулирования водорода, концентрирования диоксида углерода и аккумулирования кислорода соответствующими узлами и блоками. Второй этап обеспечивает переработку диоксида углерода и водорода по проточной схеме с дожиганием образовавшегося оксида углерода на палладиевом катализаторе.
Второй этап проводится в следующей последовательности: вначале электрическая энергия подводится к аккумулятору водорода для нагрева, а после этого переключается к СВЧ-генератору для нагрева адсорбента в концентраторе диоксида углерода; по достижении давления в этих блоках в несколько атмосфер, диоксид углерода из концентратора и водород из аккумулятора в соотношении 1:2 соответственно подаются в плазмотрон для их переработки в комбинированном тлеющем и СВЧ-разряде, при этом электрическая энергия переключается уже к блокам питания СВЧ-генератора плазмотрона и тлеющего разряда; после конденсации и отделения воды газовая смесь, содержащая непрореагировавшие диоксид углерода и водород, а также оксид углерода и избыточный водород, поступает в дожигатель оксида углерода; в это же время из адсорбера кислорода в дожигатель оксида углерода направляется недостающий кислород для окисления оксида углерода до диоксида углерода; на заключительном этапе смесь диоксида углерода и водорода проходит через поглотитель водорода, после которого диоксид углерода возвращается в систему очистки от микропримесей и диоксида углерода, а водород после нагрева своего поглотителя возвращается в аккумулятор водорода.
В численном выражении при температуре переработки диоксида углерода и водорода ~ 1200оС степень превращения диоксида углерода составляет 80,0% (см. рис. 1) при объеме диоксида углерода 15,0 л, водорода 30,0 л и газовых продуктов реакции и непрореагировавших газов 33,0 л.
Итак, на вход дожигателя оксида углерода поступает смесь газов или 12,0+3,0+18,0=33,0 л. Отдельно в дожигатель направляется кислород объемом
= 6,0 л.
В результате реакции окисления образуется диоксид углерода в количестве 12,0 л плюс диоксид углерода непрореагировавший
= 3,0 л. Итого: 12,0+3,0=15,0 л.