Рентгеновская изображающая спектроскопия солнечной короны в проекте коронас: создание аппаратуры и астрофизические результаты
УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ ИМ. П.Н.ЛЕБЕДЕВА РАН
На правах рукописи
Кузин Сергей Вадимович
Рентгеновская изображающая спектроскопия солнечной короны в проекте КОРОНАС: создание аппаратуры и астрофизические результаты
Специальность 01.03.02 Астрофизика и звездная астрономия
Автореферат диссертации на соискание ученой степени
доктора физико-математических наук
Москва – 2010
Работа выполнена в Учреждении Российской академии наук
Физическом институте им. П.Н. Лебедева РАН
Официальные оппоненты:
доктор физико-математических наук, академик РАН
Зеленый Лев Матвеевич, ИКИ, г. Москва
доктор физико-математических наук, член-корреспондент РАН
Салащенко Николай Николаевич, ИФМ РАН, г. Нижний Новгород
доктор физико-математических наук, член-корреспондент РАН
Григорьев Виктор Михайлович, ИСЗФ СО РАН, г. Иркутск
Ведущая организация Учреждение Российской академии наук Институт Земного магнетизма и распространения радиоволн им. Н.В. Пушкова (ИЗМИРАН)
Защита состоится 27 декабря 2010 года в 11 часов на заседании диссертационного совета Д 002.113.02 в конференц-зале (или в Зале отображения) Института космических исследований РАН по адресу: Москва,117997, ул. Профсоюзная 84\32, ИКИ РАН, подъезд 2.
С диссертацией можно ознакомиться в библиотеках Физического института им. П.Н. Лебедева РАН и Института космических исследований РАН
Автореферат разослан 25 ноября 2010 года
Ученый секретарь диссертационного совета
кандидат физико-математических наук ___________ А.Ю. Ткаченко
Общая характеристика работы
Актуальность темы
Предметом настоящей диссертационной работы является исследование структуры и динамики плазменных образований в короне Солнца методом изображающей спектроскопии мягкого рентгеновского и вакуумного ультрафиолетового (МР и ВУФ) диапазонов. Исследования проведены с использованием данных, полученных в серии экспериментов на космических аппаратах КОРОНАС-И, КОРОНАС-Ф и КОРОНАС-Фотон в 1994-2009 годах в разных фазах активности Солнца.
Объект исследования – солнечная корона, являющаяся внешней оболочкой Солнца1,2,3,4. Она расположена непосредственно над хромосферой, причем физические свойства вещества при переходе от хромосферы к короне меняются практически скачкообразно в исчезающе тонком, по солнечным масштабам, переходном слое: плотность плазмы падает с 1015 см-3 до 108-109 см-3 а температура возрастает с 6000К до миллиона градусов (МК). При этом сильно увеличивается степень неоднородности плазмы как по температуре, так и по плотности. Это связано с тем, что, в отличие от фотосферы, в короне магнитное поле управляет веществом. Выходящие из нижних слоев Солнца силовые линии магнитного поля образуют в короне сложные разномасштабные конфигурации, как закрытые, так и открытые.
Корона является самой динамичной частью Солнца: процессы, происходящие в ней, имеют характерные времена развития от сотых долей секунды до суток. Многие из этих явлений сопровождаются накоплением, а затем выделением в различных формах большого количества энергии. Особенно мощные взрывообразные процессы, сопровождаемые выделением большого количества энергии в электромагнитном диапазоне и ускорением частиц, называются вспышками. Помимо выделения энергии в виде излучения, огромное количество кинетической энергии выделяется во время развития корональных выбросов масс (КВМ) и в виде солнечного ветра, распространяющегося в основном по открытым линиям магнитного поля.
В то же время в короне наиболее очевидно проявляется долговременная цикличность солнечной активности, связанная с переполюсовкой глобального магнитного поля. Ее внешние проявления связаны в первую очередь со значительным изменением интегрального потока МР и ВУФ излучения с 11-летней периодичностью.
С началом космических исследований Солнца механизмы нагрева короны, ускорения солнечного ветра, природа солнечных вспышек и другие частично получили свое объяснение. Однако в полной картине разнообразных явлений солнечной активности остается еще много нерешенных вопросов.
По этой причине исследование короны Солнца в настоящее время является одним из лидирующих направлений научных астрофизических исследований. Это связано также и с тем, что Солнце является уникальным объектом – единственной звездой, которую можно изучать с высоким пространственным и временным разрешением. Это позволяет получать данные об общих физических процессах, происходящих в глубине и на поверхности звезд.
Процессы, связанные с энерговыделением в короне Солнца, определяют состояние межпланетной и, в частности, околоземной среды. Они дают основной вклад в повышение радиационного фона, во многом определяют состояние магнитосферы, ионосферы и верхних слоев атмосферы Земли, и, таким образом, влияют на проявления техногенной деятельности человека. Поэтому исследование короны важно для изучения солнечно-земных связей, выработки прогноза геоэффективных событий и их возможных последствий. Эта область исследований бурно развивается в последнее время и носит название «космическая погода».
В силу поглощения МР и ВУФ излучения в атмосфере Земли, исследования короны Солнца в этих диапазонах спектра возможно только космическими методами. Пионерские исследования в этой области были начаты выдающимся советским ученым С.Л Мандельштамом в 1957 на втором искусственном спутнике Земли5. С начала 60-х годов прошлого века космические исследования короны в ФИАНе проводились под руководством И.А. Житника. В результате проведения большого количества космических экспериментов на ракетах, искусственных спутниках Земли и межпланетных станциях были получены приоритетные результаты в физике солнечной короны.
В настоящей работе представлены разработанные автором методы и аппаратура исследования солнечной короны в МР и ВУФ диапазонах спектра, направленные на количественное определение параметров плазмы и динамических характеристик в быстропротекающих процессах, а также основные астрофизические результаты, полученные при реализации этих методов в ходе экспериментов на борту космических аппаратов серии КОРОНАС.
Объект исследования
Объектом исследования является солнечная корона
Предмет исследования
Предметом исследования являются процессы энерговыделения, протекающие в солнечной короне.
Цель исследования
Получение новых экспериментальных данных о процессах накопления и трансформации энергии в солнечной короне и их астрофизическая интерпретация.
Задачи исследования
Разработка новых методов исследования короны Солнца в МР и ВУФ диапазонах спектра, их практическая реализация и интерпретация данных о физических процессах в различных слоях короны
Цель работы заключается в решении следующих основных задач:
- Разработка новых методов получения информации о физических процессах, протекающих в солнечной короне.
- Создание комплекса космических инструментов для реализации метода изображающей спектроскопии в МР и ВУФ диапазонах спектра.
- Долговременные орбитальные наблюдения и накопление экспериментального материала о спектральных и динамических характеристиках плазменных структур в солнечной короне.
- Определение физических параметров корональной плазмы и ее динамических характеристик в различных солнечных структурах.
- Исследование высотного распределения температурного состава плазмы и процессов ее нагрева во внутренней короне.
Временной интервал выполнения данной работы составляет более 20 лет (с 1989 года).
Научная новизна.
- Разработаны и реализованы новые космические методы регистрации монохроматических изображений полного диска Солнца в МР и ВУФ диапазонах спектра, позволяющие исследовать динамические процессы в солнечной короне с высоким (до 1 секунды) временным разрешением при ограничении объемов передаваемой информации и внутреннюю (до нескольких солнечных радиусов) корону в ВУФ диапазоне спектра при наличии мощных засветок от диска Солнца.
- Разработаны новые методики определения инструментальных характеристик оптических элементов, детекторов и приборов, позволившие получить абсолютные и относительные калибровочные данные, необходимые для интерпретации результатов.
- Созданы космические спектрогелиографы и телескопы-коронографы для получения изображений полного Солнца с рекордным сочетанием характеристик: высоким спектральным, временным и пространственным разрешением в МР и ВУФ диапазонах.
- Исследован новый класс явлений в корональной плазме с температурой 4-20 МК, плотностью ~109см-3 и временем жизни до суток.
- В спектрах излучения активных областей и вспышек обнаружены эмиссионные линии, не наблюдавшиеся ранее, предложена идентификация 102 линий. Из них 18 линий наблюдаются только во вспышках.
- Определены параметры плазмы (электронные и ионные плотности и температуры, мера эмиссии, периоды осцилляций) в различных корональных структурах: активных областях, вспышечных областях (в том числе – впервые для сверхмощных событий), долгоживущих высокотемпературных структурах и пр. Определены интегральные параметры корональной плазмы в период аномально низкого минимума 24 цикла солнечной активности (2009 г.).
- Впервые исследована структура внутренней короны в ВУФ диапазоне и процессы формирования КВМ.
Положения, выносимые на защиту
- Методы регистрации солнечных изображений в МР и ВУФ диапазонах спектра с высоким временным (до 1 секунды), пространственным (до 2) и спектральным (до 10-3) разрешением позволяют получать прямую информацию о состоянии, строении и динамике узкотемпературных слоев плазмы в солнечной короне в широком интервале температур (0.05-20МК) и высот (до 4 солнечных радиусов над диском Солнца).
- Созданные инструменты для комплексного исследования активных процессов в солнечной короне в МР и ВУФ диапазонах позволили определить плотностно-температурные (пространственные и временные распределения ne и Te, температурные профили ДМЕ) и динамические (скорости распространения возмущений и периоды осцилляций) характеристики плазмы различных структур в короне Солнца.
- На основе анализа монохроматических изображений в линии иона Mg XII 8.42 обнаружены крупномасштабные (до 100 тыс.км) высокотемпературные (более 10МК) структуры, расположенные на больших высотах (до 100 тыс.км над лимбом) и с длительным (до суток) временем жизни. Установлена связь таких структур с постэруптивными аркадами, определены их температурный состав и плотность (~109 см-3), показана существенная роль плазмы с температурой 4 – 10 МК в их энергобюджете. Впервые установлено, что в активных областях в отсутствии вспышек имеется плазмы с температурой около 10 МК.
- По данным комплекса приборов ТЕСИС/КОРОНАС-Фотон установлено, что аномально низкий минимум 24 цикла солнечной активности (интенсивность МР излучения составила 1.31018 Вт) характеризовался средними значениями температуры короны 1.8МК, меры эмиссии 41047 см-3, плотности плазмы 108 см-3 и тепловой энергии 21023 Дж. Микроактивность, характеризуемая плотностью потока в МР диапазоне на уровне (1-5)10-13 Вт см -2, приводила к разогреву плазменных образований до 10 МК.
- Впервые по монохроматическим изображениям в излучении линий ионов Fe IX 171 и He II 304 с высоким пространственным (до 2) и временным (до 10 мин) разрешением выделены компоненты КВМ с температурами, характерными для плазмы короны и протуберанцев, исследованы их тонкая структура и динамика развития на высотах до 4 солнечных радиусов, выявлен сценарий возникновения корональных выбросов в результате эрупции протуберанца.
Личный вклад автора
Автором разработана аппаратура и поставлены эксперименты со спектрогелиометром РЕС на спутнике КОРОНАС-И, комплексом СПИРИТ на спутнике КОРОНАС-Ф. Автор являлся научным руководителем комплекса ТЕСИС на спутнике КОРОНАС-Фотон. Эксперименты с помощью указанных выше приборов, обработка данных и их физическая интерпретация проводились под руководством и при участии автора.
Все изложенные в диссертационной работе оригинальные научные результаты получены лично автором, либо при его руководстве и непосредственном участии.
Автором было разработано направление исследования высокотемпературных плазменных структур солнечной короны методом изображающей рентгеновской спектроскопии, основаным на одновременной регистрации изображений в различных монохроматических линиях.
Научное и практическое значение работы
- Метод регистрации слабых изображений в ВУФ диапазоне спектра рядом с более ярким (на 2-3 порядка) протяженным источником, реализованный в серии коронографов, позволил получить недоступную ранее детальную информацию о параметрах корональной плазмы на малых высотах. Этот метод открывает возможность дальнейшего значительного совершенствования параметров бортовых телескопов в части наблюдения процессов во внутренней короне Солнца.
- Метод регистрации непрогнозируемых процессов длительностью несколько минут при ограниченном объеме сохраняемой информации, реализованный в аппаратно-программным комплексе управления, позволил зафиксировать быстропротекающие процессы на Солнце с рекордным временным разрешением, исследовать динамические характеристики вспышек и других событий. Применение этого метода в аппаратуре, предназначенной для регистрации случайных процессов, позволит существенно сократить объемы накапливаемой информации и упростить ее анализ.
- Созданные элементы рентгеновской оптики (дифракционные решетки, брэгговские зеркала, рентгеновские детекторы и пр.) и приборы (МР и ВУФ спектрогелиометры и телескопы-коронографы) и разработанные методики их контроля и калибровок позволили провести регистрацию процессов в короне Солнца с рекордными по совокупности характеристиками. В ходе экспериментов с их использованием получены новые данные о характеристиках корональных плазменных структур. Использование этих инструментов в солнечных, астрофизических и лабораторных исследованиях высокотемпературной плазмы позволит сократить время проведения экспериментов и упростить интерпретацию получаемых данных.
- Получено более 600 тысяч монохроматических и узкополосных (в МР и ВУФ диапазонах спектра) изображений солнечной короны в различных фазах 23-24 циклов солнечной активности и создана база данных. С использованием этих данных проведены комплексные исследования различных структур и процессов во внутренней короне Солнца, в том числе впервые – высокотемпературных плазменных структур, внутренней короны на высотах до 4 радиусов над лимбом, микроактивности Солнца, сверхмощных вспышек балла Х. Данные активно используются отечественными и зарубежными учеными, проводящими исследования в области физики Солнца.
- Расширен каталог эмиссионных корональных линий в диапазонах 176209 и 279335 , со 140 до 165 линий. На основании полученных спектров проведена диагностика электронной температуры, плотности и ДЭМ различных структур в солнечной короне. Полученные спектры дают возможность экспериментального уточнения длин волн и отождествления линий, соответствующих как оптически разрешенным, так и запрещенным переходам в многозарядных ионах.
- Открыт новый класс компактных объектов в высокотемпературной плазме солнечной короны, который характеризуется температурой ~10 МК, плотностью ~109см-3, временем жизни от нескольких часов до суток, и расположением в короне на высотах до 100 тыс. км над лимбом. Впервые в «безвспышечных» активных областях установлено наличие горячей плазмы с температурой порядка и более 10 МК и определен температурный состав вспышечной плазмы. Предложены новые модели нагрева плазмы ударной волной, которые могут быть использованы для анализа других процессов, происходящих в астрофизической и лабораторной плазме.
- С помощью спектрофотометра SphinX, входящего в комплекс ТЕСИС, получены прецизионные данные о рентгеновском (0.8-10 ) потоке Солнца в период аномального минимума 24 цикла солнечной активности. На основе этих данных Солнце можно определить как звезду с наиболее слабым рентгеновским излучением в сфере радиусом 23 световых года. В активных областях в это время зарегистрирована рентгеновская активность на уровне (1-5)10-9 Вт/м2, которые приводили к локальному разогреву плазмы до температуры выше 10МК. Использование спектрофотометра для регулярных наблюдений Солнца позволит ввести новые критерии чувствительности и точности измерения интегрального рентгеновского потока в мониторинге солнечной активности, что необходимо для решения современных задач солнечной физики и прогноза космической погоды.
- Предложенные и апробированные методы наблюдения потенциально геоэффективных событий на разных стадиях цикла солнечной активности могут быть использованы для прогноза космической погоды.
Апробация работы.
Основные результаты работы докладывались на семинарах и ученых советах Отдела спектроскопии и Отделения оптики ФИАН и других научно-исследовательских центрах, 38 национальных и международных конференциях, в том числе: