ПОСТРОЕНИЕ ОПТИМАЛЬНЫХ СИСТЕМ БЕЗОПАСНОСТИ ЭЛЕКТРОУСТАНОВОК ОБЪЕКТОВ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА В УСЛОВИЯХ
На правах рукописи
Нефедов Сергей Федорович
ПОСТРОЕНИЕ ОПТИМАЛЬНЫХ СИСТЕМ БЕЗОПАСНОСТИ
ЭЛЕКТРОУСТАНОВОК ОБЪЕКТОВ АГРОПРОМЫШЛЕННОГО
КОМПЛЕКСА В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ
Специальность 05.20.02 – Электротехнологии
и электрооборудование в сельском хозяйстве
Автореферат диссертации
на соискание ученой степени кандидата
технических наук
Барнаул - 2012
Работа выполнена в ФГБОУ ВПО «Алтайский государственный технический университет им. И. И. Ползунова»
Научный руководитель: | доктор технических наук, профессор О.Н. Дробязко (ФГБОУ ВПО «Алтайский государственный технический университет им. И.И. Ползунова») |
Официальные оппоненты: | доктор технических наук, профессор А.А. Багаев (ФГБОУ ВПО «Алтайский государственный аграрный университет»); кандидат технических наук, доцент Ю. А. Меновщиков (ФГБОУ ВПО «Новосибирский государственный аграрный университет») |
Ведущая организация: | ФГБОУ ВПО «Красноярский государственный аграрный университет» |
Защита состоится 22 мая 2012 года в 10 часов на заседании диссертационного совета Д 212.004.02 в Алтайском государственном техническом университете им. И.И. Ползунова по адресу: 656038, г. Барнаул, проспект Ленина, 46.
http://www.altstu.ru; ntsc@desert.secna.ru
С диссертацией можно ознакомиться в библиотеке Алтайского государственного технического университета им. И.И. Ползунова.
Отзывы на автореферат в двух экземплярах, заверенные печатью Вашего учреждения, просим направлять по указанному адресу на имя ученого секретаря диссертационного совета.
Автореферат разослан «20 » апреля 2012 г.
Ученый секретарь
диссертационного совета
д.т.н., профессор Л.В. Куликова
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. До настоящего времени остается актуальной проблема обеспечения электрической и пожарной безопасности электроустановок до 1000 В объектов АПК. Состояние электробезопасности в сельском хозяйстве характеризуется тем, что при общем ежегодном количестве людей, погибающих от воздействия электрического тока порядка 4,5 тыс. человек, в сельской местности происходит около 70% электротравм. Состояние пожарной безопасности характеризуется тем, что значительную часть (20 …25 % ) составляют пожары от электротехнических причин (электропожары). В 2010 г на сельскую местность пришлось 38,8% от общего числа пожаров.
Для обеспечения электрической и пожарной безопасности на объектах АПК используются специальные организационно-технические системы, называемые системами безопасности электроустановок (СБЭ). Основную роль в этих системах играют их технические подсистемы, включающие подсистему аппаратов защиты (АЗ) и проводниковую защитную подсистему.
Важной особенностью СБЭ является возможность их многовариантного исполнения для одного и того же объекта. Это обстоятельство создает условия для выбора наилучшей технической системы безопасности для данного объекта.
Обоснование такого выбора составило содержание основной научной задачи теоретических основ электробезопасности, поставленной А.И. Якобсом в конце 70-х годов прошлого века.
В 2000 г. О.К. Никольским был сформулирован принцип оптимальной безопасности, основой которого является повышение уровня безопасности электроустановок не за счет крупных капитальных вложений, а путем оптимизации системы обеспечения безопасности.
К настоящему времени отечественными учеными разработаны методы и средства, позволяющие решать задачи моделирования процесса функционирования и оптимального выбора СБЭ на объектах АПК. Однако практическое использование разработанных методов и средств в научных исследованиях и проектной практике выявили серьезные проблемы в подготовке части исходных данных, необходимых для проведения расчетов.
К ним относились данные, представляющие собой вероятности некоторых событий, происходящих в системе электроснабжения (СЭС) объекта и в СБЭ. Для получения таких данных необходим специальным образом организованный сбор статистической информации на выбранных множествах объектов АПК. Однако до настоящего времени сбор статистической информации в необходимых объемах оказывается невозможным. В связи с этим использующиеся в настоящее время для расчетов статистические оценки вероятностей имеют низкую достоверность, рассматриваемую как неопределенность. Поскольку такая неопределенность в принципе устранима, то ее можно назвать потенциально-устранимой неопределенностью. Оценки вероятностей имеют также и неустранимую статистическую неопределенность, обусловленную случайным характером таких оценок.
Другим видом исходных данных являются семейства защитных характеристик АЗ и семейства характеристик пережога проводов. Каждая из таких характеристик имеет «разброс» значений. Они содержат неустранимую неопределенность значений времен срабатывания и времен пережога, отвечающих каждому конкретному значению тока короткого замыкания (КЗ).
Наличие неопределенности в группах исходных данных приводит к тому, что вычисленные значения показателей эффективности СБЭ являются неопределенными величинами. Их дальнейшее использование в качестве критериев оптимизации приводит к неопределенности выбора оптимального варианта СБЭ. Таким образом, неопределенность исходных данных становится серьезной проблемой, ставящей под сомнение как точность результатов моделирования СБЭ, так и правомерность результатов ее оптимизации.
Целью работы является совершенствование методик автоматизированного расчета эффективности и оптимизации систем безопасности электроустановок в условиях неопределенности исходных данных.
Для достижения поставленной цели необходимо решение следующих задач:
- анализ характера неопределенности исходных данных и их влияния на результаты расчета эффективности СБЭ;
- выбор математических методов, позволяющих производить описание неопределенных исходных данных СБЭ, выполнять расчеты показателей ее эффективности с учетом неопределенности и осуществлять выбор оптимального варианта системы при неопределенности критериев оптимизации;
- разработка методов моделирования процесса функционирования СБЭ в условиях неопределенности,
- разработка методов одно- и двухкритериальной оптимизации СБЭ в условиях неопределенности критериев;
- разработка программного средства, позволяющего реализовывать методы моделирования и оптимизации СБЭ.
Объект исследования. Процесс функционирования систем обеспечения безопасности электроустановок до 1000 В на объектах АПК, обеспечивающий предотвращение электропоражений людей, взаимодействующих с электроустановками, и возникновение пожаров от аварийных режимов электроустановок при коротких замыканиях.
Предмет исследования. Обоснование выбора оптимальных систем безопасности электроустановок на объектах АПК в условиях учета неопределенности исходных данных
Методы исследования. Теория вероятностей, прикладная статистика, математическое моделирование, исследование операций, интервальный анализ, теория нечетких множеств, компьютерное моделирование.
Научную новизну представляют:
- методы моделирования СБЭ в условиях неопределенности, позволяющие учитывать различные виды неопределенности исходных данных и определять значения показателей эффективности варианта системы, установленного на объекте;
- методы одно- и двухкритериальной оптимизации СБЭ в условиях неопределенности при использовании интервального и нечеткого описания критериев оптимизации.
Практическую ценность работы представляют:
- методика моделирования СБЭ в условиях неопределенности исходных данных, позволяющая учитывать различные виды их неопределенности при расчетах эффективности системы безопасности для конкретного или проектируемого объекта АПК;
- методика оптимизации СБЭ в условиях неопределенности, позволяющая выбрать наилучший вариант системы безопасности для конкретного или проектируемого объекта АПК;
- интегрированный программный комплекс, позволяющий производить расчет показателей эффективности вариантов СБЭ и выбор оптимального варианта системы с учетом неопределенности исходных данных;
- возможность широкого внедрения методов оптимизации СБЭ в проектную практику за счет снижения требований к степени определенности вводимой информации;
- возможность получения информации о целесообразности дополнительных затрат на мероприятия, уменьшающие степень неопределенности исходной информации.
Работа выполнена в соответствии с Концепцией развития электрификации сельского хозяйства России (МСХ РФ, Минэнерго РФ, РАСХН / М., 2002 г.) и аналитической ведомственной целевой программой «Развитие научного потенциала высшей школы» (2009 – 2011 годы).
Реализация и внедрение результатов работы.
Научные положения, выводы и рекомендации использованы при реализации Госконтракта ГК -118/2009 с Управлением гражданской обороны, чрезвычайных ситуаций и пожарной безопасности в Алтайском крае на выполнение работ по обеспечению электропожаробезопасности путем совершенствования систем электрической защиты с применением устройств защитного отключения на 14 объектах Алтайского края, в том числе 12 сельских образовательных учреждений в рамках краевой целевой программы «Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного в Алтайском крае на 2005–2010 гг.»
Методические рекомендации по созданию комплексной системы обеспечения безопасности электроустановок сельских населенных пунктов принята к использованию Главным управлением сельского хозяйства Алтайского края.
Апробация работы. Основные материалы и результаты работы представлялись и обсуждались на ежегодных научно-технических конференциях студентов, аспирантов и профессорско-преподавательского состава Алтайского государственного технического университета (Барнаул, 2009, 2010, 2011 гг.), XI международной научно-технической конференции «Измерение, контроль, автоматизация» (ИКИ-2010) (Барнаул, 2010 г.), X Международная научно-техническая конференция «Автоматизация технологических объектов и процессов. Поиск молодых» (Донецк, 2010 г.)
На защиту выносятся следующие основные положения.
- Для повышения достоверности оптимизационных расчетов СБЭ необходимо учитывать неопределенность части исходных данных.
- Математический аппарат для решения задачи оптимизации СБЭ в условиях неопределенности, должен позволять решать совокупность трех задач: 1) описание неопределенности исходных данных, 2) выполнение алгебраических операций с промежуточными данными моделирующих алгоритмов, 3) сравнение рассчитанных неопределенных значений критериев оптимальности.
- Решение задач оптимизации СБЭ в условиях неопределенности возможно с использованием методов интервального анализа и методов теории нечетких множеств.
- Алгоритм моделирования СБЭ должен предусматривать ввод интервально-неопределенных характеристик срабатывания аппаратов защиты и пережога, а также ввод вероятностных исходных данных, представляемых в виде интервалов или нечетких чисел.
- Одно– или двухкритериальная оптимизация СБЭ может производиться с использованием интервального или нечеткого критериев.
- Для оценки достоверности результатов оптимизации СБЭ в условиях неопределенности исходных данных необходимо выполнять анализ степени неопределенности вычисленных показателей эффективности системы, критериев оптимальности и степени неопределенности выбора оптимального варианта СБЭ.
Публикации. По материалам диссертационных исследований опубликовано 13 печатных работ, в том числе, 6 - в изданиях по перечню ВАК.
Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка использованных источников и приложений. Работа изложена на 148 страницах машинописного текста, содержит 16 рисунков, 6 таблиц, 4 приложения. Список литературы включает 60 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы работы, сформулированы цель и задачи исследования, приведены сведения об апробации основных результатов работы, изложены основные положения диссертации, выносимые на защиту.
В первой главе проведен анализ состояния электрической и пожарной безопасности электроустановок объектов АПК, рассмотрены роль и основные положения теории обеспечения безопасности электроустановок, выявлены проблемы информационного обеспечения расчетов и учета неопределенности исходных данных, сформулированы задачи исследования.
Ежегодно в электроустановках зданий от воздействия электрического тока гибнет более 4,5 тыс. человек, при этом на долю сельской местности приходится около 70% от общего числа электротравм.
В общей статистике пожаров около 20% составляют пожары от электротехнических причин. В 2010 году в сельской местности Российской Федерации зарегистрировано около 79 тысяч пожаров, что составило 38,8% от общего количества пожаров.
Электрическая и пожарная безопасность электроустановок на объектах АПК обеспечивается с помощью специальных организационно-технических систем (СБЭ), представляющих собой совокупности взаимосвязанных организационно-технических мероприятий и электрозащитных средств, включающих основную защиту, защиту от неисправности и дополнительную защиту. Основу таких систем составляют технические подсистемы, имеющие обычно несколько защитных функций. Так, для реализации защитной меры «автоматическое отключение питания» широко используются предохранители и автоматические выключатели. Одновременно эти устройства обеспечивают и защиту от электропожаров. Несколько защитных функций имеют и устройства защитного отключения по току утечки (УЗО). В состав технических подсистем СБЭ помимо аппаратов защиты обычно входят и системы защитных проводников. Можно считать, что в состав СБЭ входят подсистема аппаратов защиты (АЗ) и проводниковая защитная подсистема.
Особенностью технических подсистем СБЭ является их многовариантность. Для одного и того же объекта (для одной и той же СЭС объекта), могут быть созданы различные варианты технической системы безопасности, отличающиеся видом используемых аппаратов защиты, их расположением, сериями и защитными параметрами. При этом все такие варианты будут удовлетворять имеющимся нормативным требованиям и действующим методикам выбора электрозащитных систем. Это обстоятельство создает условия для выбора наилучшей технической системы безопасности электроустановок для конкретного объекта АПК.
Такой выбор может быть осуществлен в результате изучения закономерностей процессов, обуславливающих действие электроустановок на окружающие их объекты при учете действия систем безопасности. Результаты такого изучения систематизируются в форме теории обеспечения безопасности электроустановок. Совокупность таких знаний составляет научные основы построения систем обеспечения безопасности.
На необходимость создания общей теории электробезопасности в конце 70-х годов прошлого века впервые указал А. И. Якобс. В это же время им была сформулирована основная научная задача, решение которой позволит завершить создание теоретических основ электробезопасности. Она формировалась как типичная прогнозно-оптимизационная.
На протяжении последующих лет развитие теории электробезопасности осуществлялось в направлении учета различных функций систем безопасности электроустановок. В работах С. И. Кострубы была учтена функция защиты сельскохозяйственных животных, в работах А. А. Сошникова – функция учета электропожаров.
В начале 90-х годов появилось много терминов, обозначающих многофункциональные системы безопасности электроустановок («система комплексной безопасности», «система электропожаробезопасности», «комплексная система электропожаробезопасности»). В настоящее время в качестве устоявшегося термина для обозначения двухфункциональных систем безопасности используется термин «система безопасности электроустановок».
Задача построения оптимальной системы безопасности электроустановок остается актуальной и до настоящего времени. Так, в 2000 г. О. К. Никольским был сформулирован принцип оптимальной безопасности, состоящий в том, что построение и использование оптимальных систем обеспечения электробезопасности является в настоящее время для России единственным реальным путем резкого снижения опасности электроустановок.
В настоящее время задача оптимизации СБЭ на объектах АПК в целом решена. Так, на основе использования системного подхода выполнено описание СБЭ и ее внешней среды. Выделена макросистема «электроустановка - СБЭ -объект защиты» («Э-СБЭ-ОЗ»). (В качестве объекта защиты рассматриваются люди на объекте и объекты пожара). Такое описание позволяет определить функции СБЭ как «уменьшение интенсивности» воздействий электроустановок на объекты защиты и рассматривать «остаточную» опасность электроустановок как меру эффективности СБЭ. При этом функции СБЭ «расщепляются» на две подфункции – обеспечение электрической безопасности и обеспечение пожарной безопасности.
В настоящее время имеется набор (семейство) математических моделей, позволяющих моделировать процесс функционирования СБЭ в аспекте обеспечения электробезопасности (при косвенном прикосновении и прямом прикосновении), а также в аспекте обеспечения пожаробезопасности (разработаны три разновидности). В моделях учитываются три вида аппаратов защиты: предохранители, автоматические выключатели и УЗО.
В наиболее общем виде такие модели могут быть охарактеризованы как детерминированно-вероятностные. В них учитывается структура системы электроснабжения объекта и структура его СБЭ. Они представляют собой моделирующие алгоритмы, имеющие иерархическую структуру.
Определяемые в результате моделирования показатели эффективности СБЭ дают количественную оценку «остаточной» опасности электроустановок на объекте. Используются две группы показателей: показатели электробезопасности и показатели пожаробезопасности. В пределах каждой из групп показатели делятся на индивидуальные и интегральные. При этом интегральные показатели вычисляются на основе индивидуальных. Структура системы показателей эффективности СБЭ приведена на рисунке 1.
Рисунок 1 – Система показателей эффективности СБЭ