авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Авторефераты диссертаций  >>  Авторефераты по Агроинженерным системам
Pages:     | 1 |
2
|

анаэробная переработка органических отходов животноводства в биореакторе с барботажным

-- [ Страница 2 ] --

В случае, когда значение рН

(9)

В результате, модели роста биомассы и субстрата в дифференциальной форме запишутся в виде:

(10)

(11)

где k0 - экспоненциальная скорость роста бактериальной культуры; x - концентрация субстрата; xs - коэффициент потенциальной метаболической активности (пороговая константа Моно); xi - константа ингибирования.

Используя критерий стабильности процесса сбраживания: и вводя - коэффициент использования субстрата за период роста, система уравнений (10) и (11) преобразуется в уравнение, характеризующее работу биотехнологической системы с ингибиторами, находящимися в ионизированной форме:

(12)

где X – концентрация биомассы, t – время.

Математическая модель процесса анаэробной переработки обеспечивает возможность проведения расчетов параметров анаэробной биологической системы переработки органических отходов животноводства в биореакторе с барботажным перемешиванием.

В заключении составлен тепловой баланс биореактора с барботажным перемешиванием, учитывающий положительный энергобаланс при производстве товарного биогаза при анаэробной переработке органических отходов животноводства.

Таким образом, получены уравнения, описывающие движение субстрата, теплообмен и биохимические характеристики в биореакторе в процессе барботажного перемешивания.

В третьей главе «Методика исследования», в соответствии с задачами теоретических исследований, приведены описания экспериментальной установки, разработана программа, методика проведения исследования, обработка опытных данных и оптимизация параметров барботажного перемешивания при анаэробной переработке органических отходов животноводства с учетом факторов, оказывающих наибольшее влияние.

Для проведения исследований были выбраны наиболее распространенные в регионе и отвечающие технологическим требованиям на компостирование навозные стоки животноводческого комплекса КРС.

Концентрация сухого вещества и сухого органического вещества, зольность, кинематическая вязкость и поверхностное натяжение сбраживаемого субстрата, рН среды, концентрации биомассы и летучих органических кислот определялись по общепринятым методикам с использованием лабораторного оборудования.

Исследования процесса анаэробной переработки проводили в мезофильном режиме при температуре 306…308К. Для исследования процесса теплообмена при сбраживании была смонтирована экспериментальная установка с барботажным перемешивающим устройством.

Рисунок 2. Схема экспериментальной установки

Экспериментальная установка (рис. 2), состоящая из биореактора 1, водонагревательного котла 2 для задания и поддержания требуемой температуры в реакторе, с автоматическим регулированием количества выделяемого тепла, газгольдера 3 для сбора, хранения и нагнетания давления биогаза для перемешивания, барботажного перемешивающего устройства 4, позволяет оценивать все параметры получаемого теплообмена на всех этапах переработки, а так же контролировать микробиологические параметры.

Определение свойств сбраживаемого субстрата, оптимальных режимов и параметров барботажного перемешивания и анаэробной переработки производились с использованием математической теории планирования эксперимента.

Доверительная вероятность при оценке моделей принята 95 %. Значимость отдельных коэффициентов регрессии производилась независимо, с помощью критерия Стьюдента. Для проверки гипотезы об адекватности моделей использовали критерий Фишера.

В четвертой главе «Результаты экспериментальных исследований» в соответствии с поставленными задачами исследованы теплообмен и биохимические характеристики в биореакторе в процессе барботажного перемешивания.

На первом этапе экспериментальных исследований определены кинематическая вязкость и поверхностное натяжение сбраживаемого субстрата в зависимости от температуры и концентрации сухого вещества.

 Зависимость кинематической-16 Зависимость кинематической-17

Рисунок 3. Зависимость кинематической вязкости и поврехностного натяжения от температуры и содержания сухого вещества.

Поверхности отклика показывают (Рис. 3), что оба параметра зависят как от содержания сухого вещества (СВ), так и от температуры (Т). Регрессионный анализ экспериментальных данных позволил получить эмпирические формулы для определения кинематической вязкости () и поверхностного натяжения ():

, м2/с 10-6 (13)

, Н/м 10-3 (14)

Для определения распространения теплоты в стационарных условиях и определения температурной неоднородности сбраживаемого субстрата, в следствии коллоидно-полидисперсионного состава среды, на втором этапе экспериментальных исследований были проведены измерения температуры на разных расстояниях от стенки поверхности нагрева при свободном распространении теплоты.

В результате относительная стабилизация температур происходит на расстоянии 65-85 мм при содержании СВ 8 %. Наблюдается значительный температурный градиент 8…10 К между теплообменной рубашкой и сбраживаемым субстратом. Причем, основной перепад температур наблюдается в пределах этого теплового пограничного слоя. Внутри объема сбраживания происходит выравнивание температуры и она приобретет однородность. При увеличении содержания СВ до 18% в сбраживаемом субстрате тепловой пограничный слой увеличивается до 0,24м.

Для описания процесса распространения теплоты в объеме сбраживаемого субстрата без перемешивания, ввиду наличия высокого теплового пограничного слоя, использовалось критериальное уравнение, учитывающее различия полей температур, вязкости и толщины пограничного слоя при нагревании. Проведенные исследования и использование пакета статистической обработки данных STATISTICA 6.0 для регрессионного анализа эксперимента позволили получить уравнение, описывающее процесс распространения теплоты в сбраживаемом субстрате от теплообменной стенки биореактора для геометрически подобных реакторов:

(15)

Анализ показывает, что при высокой концентрации СВ (>10%) теплообмен происходит в ограниченном пространстве и силы внутреннего взаимодействия частиц сбраживаемого субстрата уравновешивают подъемную силу свободного движения вблизи поверхности теплоносителя. Передача теплоты естественной конвекцией в сбраживаемом субстрате, в пределах теплового пограничного слоя затрудняется, и распространение теплоты происходит теплопроводностью. При этом, =32 Вт/м2·К, максимальный выход биогаза составил 0,4 м3 с кг СОВ при концентрации СВ в сбраживаемом субстрате 13%.

Для выявления влияния барботажного перемешивания на интенсификацию теплообмена в биореакторе на третьем этапе рассмотрены процессы вынужденного движения и исследована интенсивность теплообмена между горизонтальным цилиндром и средой – для геометрически подобных реакторов.

Выявлено, что наиболее интенсивное перемешивание происходит при скорости движения среды близкой к максимально допустимой – 0,4 м/с. При барботажном перемешивании сбраживаемой среды с указанной выше скоростью, после 120-140 секунд перемешивания достигается требуемая температурная однородность, соответствующая технологическим требованиям процесса сбраживания.

Экспериментальные данные обрабатывались согласно полученному критериальному уравнению (8). Для инженерных расчетов трубчатых биореакторов с системой барботажного перемешивания получено рабочее уравнение, учитывающее влияние технологических парметров системы на коэффициент теплоотдачи:

(16)

При этом, = 85 Вт/м2·К, максимальный перепад температуры 2 К, при концентрации СВ в сбраживаемом субстрате 13%.

С целью выявления положительного эффекта от барботажного перемешивая на процесс анаэробной переработки органических отходов животноводства, в работе были проведены комплексные исследования его технологических параметров.

 Изменение концентрации-22

Рисунок 4. Изменение концентрации биомассы X

в зависимости от продолжительности сбраживания

 Влияние наличия барботажного-23 Влияние наличия барботажного-24

Рисунок 5. Влияние наличия барботажного перемешивания в процессе анаэробной переработки органических отходов животноводства на

а) концентрацию беззольного вещества

б) рН среды

в) концентрацию летучих органических кислот

При отсутствии перемешивания процесса развивается по модели ингибирования Андреу, а процесс барботажного перемешивания позволяет сбраживаемой среде приближать развитие культуральной среды по модели Моно (Рис. 4). Наращивание максимальной концентрации биомассы до 0,8г/л при этом ускорилось на 20 часов по сравнению со стационарным режимом сбраживания.

Для оценки эффективности применения барботажного перемешивания определялась концентрация беззольного вещества, концентрация летучих органических кислот, рН среды в сбраживаемом субстрате (Рис 5).

Снижение концентрации беззольного вещества до уровня в 16 г/л, для сбраживания с барботажным перемешиванием составило 22 дня, без перемешивания – 30 дней, дальнейшее проведение процесса является нецелесообразным, поскольку значительного снижения концентрации не происходит. Оптимальный рост метаногенных бактерий происходит при рН = 7 (в диапазоне значений 6,8 -7,2). На рост же кислотообразующих бактерий, как показывает концентрация летучих органических кислот, рН-среды влияет сравнительно мало.

Таким образом, при оптимальном режиме сбраживания и однородном температурном поле, в результате применения барботажного перемешивания, удельный выход биогаза с 1 кг СОВ составил 0,75 м3, а период сбраживания снизился на 25 %.

На основании полученных данных разработана комплексная технологическая линия для анаэробной переработки органических отходов животноводства с получением качественных продуктов в виде биогаза, идущего на получение электрической энергии и высококачественного органического удобрения. Данная технологическая линия, помимо получения прямых продуктов, позволяет решать задачи обеспечения охраны окружающей среды и санитарно-гигиенического благополучия животноводческого комплекса.

В пятой главе «Технико-экономическая эффективность выполненных исследований» приведена методика расчета системы анаэробной переработки органических отходов животноводства и определена ее эффективность.

В основу расчета экономической эффективности положен принцип сравнения биогазовой установки с барботажным перемешивающим устройством и без него. Эффективность применения новой технологической линии по переработке органических отходов составила 181,1 тыс. руб/год, срок окупаемости 1,4 г. При этом обеспечивается полное уничтожение семян сорных трав, обеззараживание и улучшение экологической обстановки в районе животноводческой фермы.

ОБЩИЕ ВЫВОДЫ

  1. Экспериментально изучены и определены кинематическая вязкость и поверхностное натяжение субстрата на основе органических отходов животноводства, которые могут быть использованы в качестве справочных характеристик при расчетах использования процесса барботажного перемешивания в анаэробных биореакторах.
  2. Разработана конструкция биореактора с барботажным перемешиванием, позволяющая интенсифицировать процесс анаэробной переработки органических отходов животноводства: свести к минимуму температурную неоднородность и отводить ингибирующие продукты жизнедеятельности бактерий.
  3. Разработанная математическая модель процессов теплообмена и ингибирования биологической активности в анаэробно сбраживаемом субстрате на основе органических отходов животноводства, а так же энергобаланс биогазовой установки на базе биореактора с барботажным перемешиванием позволяют производить расчеты технико-технологических параметров системы.
  4. Экспериментальные исследования биореактора с барботажным перемешиванием по переработке органических отходов животноводства показали адекватность полученной математической модели и достоверность полученных результатов. Выявлено, что процесс барботажного перемешивания при анаэробной переработке позволяет снизить ингибирующее действие летучих органических кислот и ускорить снижение концентрации беззольного вещества на 25 %, удельный выход биогаза в мезофильном режиме с 1 кг СОВ составил 0,75 м3.
  5. Разработана методика инженерного расчета биореактора с системой барботажного перемешивания, позволяющая производить расчеты его конструктивно-технологических параметров.
  6. Разработана технологическая линия по ускоренной анаэробной переработке органических отходов животноводства, с применением вертикального биореактора с барботажным перемешивающим устройством, основные принципы которой и ее конструктивного исполнения защищены патентом РФ.
  7. Результаты производственных испытаний системы переработки органических отходов животноводческого комплекса КРС ОАО «Тепличное» Республики Марий Эл подтвердили ее работоспособность при применении биореактора с барботажным перемешиванием. Годовой экономический эффект по приведенным затратам – 181,1 тыс. руб, срок окупаемости – 1,4 года.

Основные положения диссертации опубликованы в следующих работах (курсивом выделены работы опубликованные в изданиях перечня ВАК):

  1. Костромин, Д. В. Совершенствование технологического процесса метанового сбраживания в биоэнергетических установках / Д. В. Костромин, Д. Н. Шамшуров // Перспективы развития инноваций в биологии: материалы науч.-практ. конф. в рамках междунар. науч.-образоват. школы-конференции по биоинженерии и приложениям (23 ноября 2007 года, г. Москва) / МГУ им. М. В. Ломоносова, биолог. фак. – М.: Инноватика, 2007. – С. 42-43. (0,1 п.л./0,05 п.л.).
  2. Сидыганов, Ю. Н. Барботажное перемешивание в биореакторах анаэробного сбраживания / Ю. Н. Сидыганов, Д. Н. Шамшуров, Д. В. Костромин // Национальные приоритеты развития России: образование, наука, инновации: сб. тез. выступлений участников программы (3 – 6 марта 2008 года, г. Москва). – М., 2008. – С. 218-219. (0,06 п.л./0,02 п.л.).
  3. Сидыганов, Ю. Н. Анаэробная переработка отходов для получения биогаза / Ю. Н. Сидыганов, Д. Н. Шамшуров, Д. В. Костромин // Механизация и электрификация сельского хозяйства. – 2008. – № 6. – С. 42-43. (0,34 п.л./0,2 п.л.).
  4. Костромин, Д. В. Моделирование теплообмена сбраживаемого субстрата в условиях барботажного перемешивания / Д. В. Костромин // Наука в условиях современности: сб. ст. проф.-преп. сост., докторантов и асп. МарГТУ по итогам науч.-техн. конф. в 2009 г. – Йошкар-Ола: МарГТУ, 2009. – С. 70-73. (0,25 п.л./0,25 п.л.).
  5. Костромин, Д. В. Тепловой баланс биореактора с применением барботажного перемешивания / Д. В. Костромин // Наука в условиях современности: сб. ст. проф.-преп. сост., докторантов и асп. МарГТУ по итогам науч.-техн. конф. в 2009 г. – Йошкар-Ола: МарГТУ, 2009. – С. 74-77. (0,25 п.л./0,25 п.л.).
  6. Патент на полезную модель № 88989. Устройство для перемешивания субстрата для анаэробных биореакторных комплексов / Д. В. Костромин, Ю. Н. Сидыганов, А. В. Канарский, Д. Н. Шамшуров.
  7. Патент на полезную модель № 81961. Система комплексной переработки органических отходов / Е. М. Романов, Ю. Н. Сидыганов, Д. В. Костромин.
  8. Положительное решение о выдаче патента на полезную модель. Система глубокой переработки органических отходов / Д. В. Костромин, Ю. Н. Сидыганов, А. В. Канарский, Д. Н. Шамшуров. – № 2009143550 от 24.11.2009 г.

Подписано в печать 27.01.2010.

Тираж 100 экз. Заказ № 4287

Редакционно-издательский центр

Марийского государственного технического университета

424006 Йошкар-Ола, ул. Панфилова, 17



Pages:     | 1 |
2
|
 
Авторефераты диссертаций  >>  Авторефераты по Агроинженерным системам








 
   |   КОНТАКТЫ
© 2013 dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.