авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Метод и алгоритмы выделения полезного сигнала на фоне шумов при ограничениях на объем выборки и в условиях априорной неопределнности

-- [ Страница 1 ] --

На правах рукописи

ШЕРСТОБИТОВ АЛЕКСАНДР ИВАНОВИЧ

МЕТОД И АЛГОРИТМЫ ВЫДЕЛЕНИЯ ПОЛЕЗНОГО СИГНАЛА НА ФОНЕ ШУМОВ ПРИ ОГРАНИЧЕНИЯХ НА ОБЪЕМ ВЫБОРКИ И В УСЛОВИЯХ АПРИОРНОЙ НЕОПРЕДЕЛННОСТИ

Специальность: 05.12.04 – «Радиотехника, в том числе системы

и устройства телевидения»

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Шахты 2007

Работа выполнена на кафедре «Радиоэлектронные системы» Государственного образовательного учреждения высшего профессионального образования «Южно-российского государственного университета экономики и сервиса»

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

доктор технических наук,

доцент (ЮРГУЭС, г. Шахты) Марчук Владимир Иванович

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:

доктор технических наук,

профессор (ЮФУ ТТИ, г. Таганрог) Федосов Валентин Петрович

кандидат технических наук,

доцент

(РВИРВ (РАУ), г. Ростов-на-Дону) Елисеев Александр Вячеславович

ВЕДУЩАЯ ОРГАНИЗАЦИЯ: Филиал института аналитического приборостроения РАН (г. Пятигорск)

Защита состоится ………………. в 1400 часов на заседании диссертационного совета Д.212.208.20 в Технологическом институте Южного федерального университета в г. Таганроге в аудитории Д-406 по адресу:

пер. Некрасовский, 44, г. Таганрог, Ростовская обл., ГСП-17А, 347928

С диссертацией можно ознакомиться в Зональной научной библиотеке Южного федерального университета.

Отзыв на автореферат, заверенный гербовой печатью организации, просим направлять ученому секретарю диссертационного совета Д212.208.20 ТТИ ЮФУ по адресу:

пер. Некрасовский, 44, г. Таганрог, Ростовская обл., ГСП-17А, 347928

Автореферат разослан "___"______ 2007 г.

Ученый секретарь

диссертационного совета Д.212.208.20

кандидат технических наук, доцент В.В. Савельев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Развитие научного и технического потенциала отражается ростом технического оснащения промышленных, народно-хозяйственных объектов. В основу их функционирования входят новые образцы техники, позволяющие автоматизировать процессы управления, контроля техническими объектами. Основу многих разработок составляют системы сбора и обработки измерительной информации. Для упрощения систем непрерывного контроля, управления, в большинстве случаев реализуются устройства без передачи информации по каналам связи и последующего их хранения. Использование таких систем предъявляет серьезные требования к обработке получаемой измерительной информации и точности принимаемых решений. Дополнительно необходимо обеспечить высокую достоверность и скорость обработки информации в случае реализации нелинейных методов обработки или использовать эффективные линейные методы. Сложность системы, реализующей обработку измерительной информации, во многом определяется решаемой задачей. В результате практической реализации большинства систем обработки, априорная информация о характеристиках обрабатываемого процесса ограничена.





Обработка измерительной информации, полученной в результате эксперимента, в системах контроля, управления и диагностики является сложной комплексной задачей, требующей для своего решения привлечения разнообразных методов математической статистики, которые представлены в работах Дж. Бендата, Т. Андерсена, Б.Р. Левина, Э.И. Цветкова, В.И. Тихонова, С.А. Айвазяна, или фильтрации – работы Н. Винера, Р.Е. Калмана, Л. Рабинера, Б. Голда, Б. Уидроу. Как правило, при проведении уникальных экспериментов, невозможно повторить проводимый опыт при всех прочих равных условиях, реализация результатов измерений ограничена по объему. Анализ таких данных затруднен наличием ошибок, имеющих случайный характер, которые не позволяют достоверно оценить характеристики полученных зависимостей или описать их функционально. Необходимо применять специальные методы для ослабления случайной составляющей (шума) и выделения полезного сигнала. Оценка полезного сигнала может осуществляться как параметрическими, так и непараметрическими методами в зависимости от априорной информации о полезной и шумовой составляющей. Для использования параметрических методов обработки необходима априорная информация о модели функциональной зависимости полезного сигнала с целью оценки её параметров по исходной реализации результатов измерений – решение задачи аппроксимации. Строгое решение задачи аппроксимации возможно получить только для ограниченного класса функций. Оптимальность и эффективность такой оценки, в большинстве случаев, достигается при гауссовском законе распределения шумовой составляющей, что редко выполняется на практике (работы А.И. Орлова). Использование непараметрических метод обработки требует значительно меньше априорной информации, но погрешность оценки сигнала имеет ярко выраженную зависимость от параметров обработки, значениях которых зависят от характеристик выделяемого полезного сигнала и закона распределения шума, объема исходной реализации сигнала. Предпринимаются различные попытки получить квазиоптимальные или эвристические методы выделения полезного сигнала на фоне аддитивного шума, оценки которых, при определенных условиях, наиболее близки к оптимальным.

В связи с этим, задача разработки методов анализа нестационарных случайных сигналов в условиях априорной неопределенности и единственной реализации обрабатываемого сигнала является весьма актуальной как с теоретической так и с практической точек зрения.

Объектом исследования является выделение полезного сигнала методом кусочного размножения оценок и алгоритмы его реализации.

Предметом исследований является уменьшение погрешности оценки полезной составляющей в условиях априорной неопределенности.

Целью диссертационной работы является разработка метода кусочного размножения оценок для обработки нестационарных случайных сигналов, в условиях априорной неопределенности и алгоритмов его реализации.

Для достижения поставленной цели необходимо решить следующие основные задачи:

1. Провести анализ основных методов ослабления аддитивной помехи при обработке дискретных сигналов в условиях априорной неопределенности.

2. Разработать и провести исследования метода кусочного размножения оценок в условиях априорной неопределенности.

3. Исследовать временные и спектральные характеристики устройства, реализующего метод кусочного размножения оценок, и разработать его структурную схему.

4. Провести сравнительный анализ ослабления шумовой составляющей при обработке методом кусочного размножения оценок и наиболее широко используемых методов.

5. Провести исследования эффективности метода кусочного размножения оценок при ослаблении аддитивной шумовой составляющей в результате обработки натурных реализаций сигналов.

Научная новизна.

В рамках диссертационной работы получены следующие новые научные результаты:

1. Разработан метод кусочного размножения оценок для обработки нестационарного случайного сигнала (патент № 2257610) в условиях априорной неопределенности и ограниченного объема исходной реализации, который основан на скользящем кусочном размножении оценок полезного сигнала с последующим усреднением их в каждом сечении процесса.

2. Получены выражения, устанавливающие связь между значениями исходной реализации и оценками полезного сигнала в результате аппроксимации на каждом кусочном интервале полиномом произвольной степени.

3. Проведен анализ метода кусочного размножения оценок полезного сигнала, на основе которого предложена его модификация, позволяющая уменьшить погрешность оценки полезного сигнала на начальном и конечном интервале выборки.

4. Получены выражения импульсной характеристики и системной функции устройства, реализующего метод кусочного размножения оценок.

5. В результате проведенных исследований установлено, что значения доверительных интервалов погрешности оценки полезного сигнала практически не зависят от длины скользящего интервала разбиения и постоянны при обработке реализаций с различными функциями ограниченного класса моделей полезного сигнала.

Практическая значимость.

  1. Предложен метод анализа нестационарного случайного сигнала для выделения полезного сигнала при обработке реализаций ограниченного объема, путем скользящего её разбиения на перекрывающиеся интервалы постоянной длины. Использование предлагаемого метода оценки полезного сигнала позволяет получить единый подход обработки, как на границах исходной реализации, так и в её середине при ограниченности исходной выборки.
  2. Разработана модификация метода кусочного размножения оценок, позволяющая уменьшить, в среднем на 10 – 15%, погрешность оценки полезного сигнала.
  3. В результате проведения машинного эксперимента установлено, что характеристики погрешности оценки полезного сигнала в зависимости от функции в заданном классе изменяются в пределах 3-5%, что показывает инвариантность метода обработки в рамках принятых ограничений.

4. В результате проведенных исследований установлено, что использование предлагаемого метода выделения полезного сигнала в условиях ограниченности объема реализации, позволяет получить погрешность оценки более чем на 10% меньшую, чем при использовании известных методов в зависимости от объема априорной информации.

Методы исследования основываются на использовании методов математической статистики, теории фильтрации, статистической радиотехники и машинного эксперимента на ПЭВМ. Проверка теоретических расчетов и выводов проводилась в математическом пакете Maple и с использованием машинного моделирования на наборах тестовых моделей и натурных реализациях результатов измерений.

Достоверность и обоснованность результатов обеспечивается результатами машинного моделирования на различных моделях полезного сигнала и аддитивной шумовой составляющей. Новизна технических предложений подтверждается экспертизой технических решений, которые удостоверяются патентом на предлагаемый способ обработки и свидетельствами на программное обеспечение алгоритмов, которые их реализуют.

Реализация результатов работы.

Диссертационная работа выполнялась в рамках госбюджетных и научно–исследовательских работ совместной Проблемной лаборатории перспективных технологий и процессов РАН и ЮРГУЭС, в том числе по ЕЗН Министерства образования России (ЮРГУЭС-1.02Ф, № ГР 01.200.210719, Инв. № 02.20.0306360). «Методы первичной обработки результатов измерений и алгоритмы, их реализующие» и в соответствии с заданием Минобрнауки РФ по теме «Идентификация полезной составляющей результатов измерений в условиях априорной непараметрической неопределенности и ограниченном объеме данных» (ЮРГУЭС – 2.06.Ф), а также гранта в рамках аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы» (РНП.2.1.2.75). Результаты диссертационной работы внедрены на предприятиях для обработки результатов измерений, что подтверждается соответствующими актами о внедрении в НИИ Электронной техники г. Воронежа при разработке цифровых фильтров и архитектуры мультипроцессорной системы и программного обеспечения на базе цифрового сигнального процессора серии «Триллер», НИИ экономики и нормативов г. Ростов-на-Дону. Результаты диссертационной работы в виде алгоритмов и программ используются в учебном процессе ЮРГУЭС по дисциплинам «Радиотехнические цепи и сигналы», «Устройства цифровой обработки сигналов», «Статистическая радиотехника», «Методы цифровой обработки сигналов». Предложенный метод обработки результатов измерений признан изобретением и подтвержден патентом №2257610. Программное обеспечение для ПЭВМ, реализующее метод кусочного размножения оценок результатов измерений, официально зарегистрированы в Российском агентстве по патентам и товарным знакам (РОСПАТЕНТ).

Апробация работы.

Основные положения диссертационной работы докладывались и одобрены на научно-технических конференциях: III и IV Международная научно-практическая конференция «Теория, методы и средства измерений, контроля и диагностики», г.Новочеркасск 2002 и 2004г.; V, VII, VIII и IX Международная конференция «Цифровая обработка сигналов и её применение», г. Москва 2003, 2005-2007гг.; IV Международная научно-техническая конференция «Измерение, контроль, информатизация»: г.Барнаул, 2003г.; Международная научная конференция «Системный подход в науках о природе, человеке и технике» г.Таганрог, 2003г.; Международная научная конференция «Анализ и синтез как метод научного познания» г.Таганрог, 2004г.; Международный симпозиум «Аэрокосмические приборные технологии» г.Санкт-Петербург, 2004г.; Выездная сессия секции энергетики отделения энергетики, машиностроения и процессов управления РАН г.Ессентуки, 2005г.; Международная конференция «Оптимальные методы решения научных и практических задач» г.Таганрог 2005г.; Международная конференция «Цифровые методы и технологии» г.Таганрог, 2005г.; Межрегиональная научная конференция «Современные проблемы радиоэлектроники» г.Ростов-на-Дону 2006г.

Публикации. По результатам выполненных исследований опубликовано 14 работ, в том числе 1 патент, 1 свидетельство на программный продукт, 2 статьи в центральных рецензируемых журналах, 10 статей и тезисов докладов в трудах международных конференций, симпозиумов.

На защиту выносится:

  • метод анализа нестационарного случайного сигнала, заключающийся в скользящем разбиении исходной реализации на перекрывающиеся интервалы постоянной длины, получение множества оценок полезного сигнала путем аппроксимации исходных значений на каждом интервале полиномом произвольной фиксированной степени с последующим их усреднением в каждом сечении процесса;
  • анализ выражений, устанавливающие связь между значениями исходной реализации и оценками полезного сигнала, а также модификация исходного метода, позволяющая уменьшить погрешность оценки полезного сигнала на начальном и конечном интервале выборки;
  • выражения импульсной характеристики и системной функции устройства, реализующего метод кусочного размножения оценок;
  • результаты оценки погрешности выделения полезного сигнала при обработке реализаций с различными моделями функции полезного сигнала и аддитивной шумовой составляющей;
  • результаты сравнительной оценки погрешности выделения полезного сигнала с наиболее известными и широко используемыми методами выделения полезного сигнала;
  • результаты выделения полезного сигнала и ослабления аддитивного шума при обработке натурных реализаций сигналов в условиях априорной неопределенности.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, сформулирована цель и основные задачи исследования, определена научная новизна, практическая значимость и основные положения, выносимые на защиту. Приведены сведения об апробации и внедрении результатов диссертационной работы.

В первой главе проводится анализ основных методов обработки сигналов в условиях ограниченности априорных данных о составляющих исходного сигнала. Рассмотрен ряд математических моделей взаимодействия полезной и шумовой составляющей. Введены пространства функций, ограничивающие класс моделей полезного сигнала и класс моделей случайной функции шумовой составляющей. В диссертационной работе, исходный сигнал представляет собой последовательность значений, которые получены в равноотстоящие моменты времени. Исходя из цели диссертационной работы, вводятся ограничения на объем априорных данных о составляющих исходного сигнала и объем его реализации. Предполагается, что полезный сигнал локально описывается полиномиальными функциями, которые принадлежат к пространству непрерывных функций, а закон распределения шума является симметричным относительного математического ожидания. В виду отсутствия количественной оценки объема априорных данных об обрабатываемом процессе для выбора наилучшего метода обработки, затруднительно классифицировать существующие методы в рамках принятых ограничений. В диссертационной работе проводится сравнительный анализ существующих методов обработки на основе принятых ограничений. Проведенный анализ показал, что одним из основных недостатком, для большинства анализируемых методов, является значительное увеличение погрешности оценки полезного сигнала в условиях ограниченности объема выборки. Отсутствие единого подхода к построению систем обработки, в условиях ограниченности как априорных данных об обрабатываемом процессе, так и объема реализации, делает решение этой задачи весьма актуальной как с практической, так и с теоретической точки зрения.

Во второй главе рассматривается метод кусочного размножения оценок (патент № 2257610), основанный на разбиении исходной дискретной реализации на перекрывающиеся интервалы одинаковой длины, с последующей оценкой на каждом из них полезного сигнала. Это позволяет получить множество оценок полезного сигнала в каждом сечении процесса с последующим их усреднением.



Pages:   || 2 | 3 |
 



Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.