авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Разработка и исследование микроволновых аппликаторов для тепловой терапии биологических тканей

-- [ Страница 1 ] --

На правах рукописи

НОВРУЗОВ Илья Игоревич

РАЗРАБОТКА И ИССЛЕДОВАНИЕ МИКРОВОЛНОВЫХ АППЛИКАТОРОВ ДЛЯ ТЕПЛОВОЙ ТЕРАПИИ

БИОЛОГИЧЕСКИХ ТКАНЕЙ

Специальность 05.12.07 – Антенны, СВЧ-устройства и их технологии

А в т о р е ф е р а т

диссертации на соискание ученой степени

кандидата технических наук

Саратов – 2012

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Саратовский государственный технический университет

имени Гагарина Ю.А.».

Научный руководитель - доктор технических наук, профессор

Комаров Вячеслав Вячеславович

Официальные оппоненты - Мещанов Валерий Петрович –

доктор технических наук, профессор,

Заслуженный деятель науки РФ, директор

ООО НПП «Ника-СВЧ»

Салий Игорь Николаевич –

доктор физико-математических наук,

профессор кафедры «Радиотехника и

электродинамика» Саратовского

государственного университета

имени Н.Г. Чернышевского

Ведущая организация - Саратовский филиал Учреждения Российской

академии наук Института радиотехники и

электроники им. В.А. Котельникова

Защита состоится «18» октября 2012 г. в 14 часов на заседании диссертационного совета Д.212.242.01 при ФГБОУ ВПО «Саратовский государственный технический университет» по адресу: 410054, г. Саратов, ул. Политехническая, 77., ауд. 319/1.

С диссертацией можно ознакомиться в научно-технической библиотеке ФГБОУ ВПО «Саратовский государственный технический университет имени Гагарина Ю.А.».

Автореферат разослан «____»_________ 2012 г.

Ученый секретарь

диссертационного совета А.А. Димитрюк

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Электромагнитное (ЭМ) излучение различных частотных диапазонов широко используется в современных медицинских технологиях. Одной из таких технологий является СВЧ-нагрев биологических тканей, получивший распространение в лечении онкологических заболеваний. Кроме того, СВЧ-энергия применяется для восстановления мышц после травм, ускорения процесса воздействия лекарственных препаратов, стерилизации инструментов и т.д.

Традиционными методами лечения опухолей считаются хирургическая операция, химиотерапия и лучевая терапия. Они имеют ряд недостатков: достаточно высокий уровень осложнений, риск ослабления иммунитета, длительный восстановительный период. Помимо традиционных подходов для лечения опухолей в последнее время получили широкое развитие новые методы лечения, такие как гипертермия и абляция.

Термином «абляция опухоли» обозначается прямое термическое или химическое воздействие на опухолевую ткань с целью ее разрушения. Наиболее распространенными технологиями термической абляции являются: ультразвуковая, радиочастотная, лазерная и микроволновая. СВЧ-абляция обладает рядом преимуществ по сравнению с другими методами: большая глубина проникновения, отсутствие прямого электрического контакта с биологической тканью, высокий темп нагрева, отсутствие ограничений по подводимой мощности к аппликатору, связанных с обугливанием тканей, возможность нагрева сухих тканей (обезвоженных), относительно высокие температуры абляции (выше 100°С), возможность коагуляции сосудов.



Лечебная гипертермия (ЛГ) - это метод лечения онкологических заболеваний, при котором тело, его участки или отдельные органы подвергаются воздействию высокой температуры (до 44-45°С), в результате чего существенно увеличивается чувствительность раковых клеток к ионизирующему облучению и ряду противоопухолевых лекарственных средств.

Методика малоинвазивного разрушения опухолей за счет локального нагрева ЭМ полем клеток до температуры их коагуляции была предложена более 50 лет назад, однако эффективные устройства, предназначенные для этих целей, появились относительно недавно. Большой вклад в развитие данного направления внесли такие ученые как: Девятков Н. Д., Синицин Н.И., Кобзев А.В., Гельвич Э. А., Мазохин В. Н., Макаров В.Н., Nikawa Y., Yang D., Vrba J., Cavagnaro M., Ita H., Witters D.M., Kikuchi K., Gibbs F.A., Lee F.T.

Большая часть подобных установок работает на специально выделенных для этого ISM (Industrial Scientific Medicine) частотах: 433, 915, 2450 МГц. Для подведения ЭМ излучения к пораженной ткани применяются различные микроволновые аппликаторы: контактные, интерстициальные, внутриполостные. Широкое распространение для систем контактной гипертермии получили аппликаторы на цилиндрических и прямоугольных волноводах, а также микрополосковые и щелевые антенны. Существуют также аппликаторы сложной конфигурации, например, на основе спиральных антенн, тороидальных и эллиптических резонаторов. Многообразие подобных систем определяется различными задачами и необходимостью создания теплового поля заданной формы в биологической ткани. Для устранения локальных перегревов поверхностных слоев и фокусировки ЭМ поля при проведении ЛГ используют специальные металлические ребра, а для снижения размеров излучателей - их жидкостное заполнение.

Реализация технологий СВЧ-абляции чаще всего осуществляется с помощью интерстициальных коаксиальных антенн малого диаметра, которые помещаются внутри опухоли. Наиболее простым вариантом является монопольная антенна, представляющая собой продолжение отрезка коаксиальной линии, с излучающим внутренним проводником. Широкое распространение получили дипольные антенны, с одним или несколькими щелевыми излучающими элементами. Для минимизации отраженной волны и создания заданного распределения ЭМ поля в области взаимодействия применяются вспомогательные дроссельные элементы конструкции, что приводит к увеличению диаметра антенны. Современные технологии позволяют также разместить в коаксиальном аппликаторе термодатчик и систему охлаждения.

Основные тенденции развития современных медицинских систем микроволнового нагрева биотканей связаны с решением целого ряда взаимосвязанных задач, направленных на снижение уровней отраженной и подводимой мощностей, дальнейшее уменьшение размеров СВЧ-излучателей, особенно функционирующих на частотах 915 и 433 МГц, формирование коагуляционной зоны заданного объема.

Решение всех этих задач непосредственно связано с более детальным изучением процессов взаимодействия ЭМ волн с биологическими тканями, поиском новых конструкционных решений и оптимизацией микроволновых аппликаторов. Таким образом, разработка и модернизация устройств нагрева биологических тканей являются актуальными задачами современной медицины и СВЧ-техники. Основными инструментами исследования электромагнитных и тепловых характеристик подобных устройств являются экспериментальные измерения и компьютерное моделирование. Привлечение сразу нескольких численных методов дает возможность повысить достоверность результатов расчетов.

Целью данной диссертационной работы является создание компактных микроволновых аппликаторов для локальной гипертермии и абляции новообразований биологических тканей, обеспечивающих заданное распределение ЭМ и теплового поля в области взаимодействия, а также снижение уровней подводимой и отраженной мощностей на рабочих частотах.

Для достижения поставленной цели необходимо решить следующие задачи:

  • Проведение обзора современных проектных решений и тенденций развития излучательных СВЧ-устройств для гипертермии и абляции опухолей.
  • Построение математических моделей процессов распространения и поглощения ЭМ волн в многослойных диэлектрических средах, облучаемых СВЧ-энергией с помощью волноводных и коаксиальных аппликаторов.
  • Исследование электродинамических и тепловых характеристик контактного цилиндрического аппликатора с металлическими Т-ребрами и диэлектрической линзой, а также штыревого коаксиального аппликатора малого диаметра на частотах 915 МГц и 2,45 ГГц.
  • Изучение влияния вариаций диэлектрических свойств биотканей при высоких температурах на распределение ЭМ и тепловых полей в ближней зоне коаксиального интерстициального излучателя.
  • Оптимизация конструкций анализируемых микроволновых аппликаторов с целью снижения уровня отраженной мощности при минимальных массогабаритных показателях и заданном распределении температурного поля в зоне коагуляции.

Научная новизна

  1. Проведен численный анализ и исследованы отражательные характеристики контактного микроволнового аппликатора на цилиндрическом волноводе с металлическими Т-ребрами, а также найдены его размеры, обеспечивающие необходимые режимы работы на заданной частоте.
  2. Установлено, что для локализации ЭМ поля в подповерхностных слоях биологических тканей, облучаемых СВЧ-энергией волноводным аппликатором контактного типа, может быть использован дополнительный элемент конструкции излучателя – диэлектрическая линза, радиус кривизны которой сопоставим с рабочей длиной волны аппликатора.
  3. Для снижения уровня отраженной мощности на частоте 2,45 ГГц интерстициального аппликатора предложено использовать конусообразную насадку, выполненную из керамики с высокой диэлектрической проницаемостью ( = 25), внутри которой размещается элемент излучения.
  4. Проведено исследование влияния вариаций диэлектрических свойств биологических сред, с помощью математической модели, описывающей нелинейные процессы их СВЧ-нагрева, на распределение ЭМ и тепловых полей в ближней зоне штыревого коаксиального излучателя.
  5. Показано, что, несмотря на более глубокое проникновение ЭМ поля в биоткань с малыми диэлектрическими потерями, зона нагрева существенно снижается, в то время как увеличение коэффициента потерь среды распространения позволяет расширить эту зону.

Практическая значимость работы

    • Разработаны конструкции аппликаторов контактного и интерстициального типов для проведения микроволновой терапии опухолей животных и человека на частотах 915 МГц и 2,45 ГГц, обеспечивающие локализованное распределение СВЧ-мощности во внутритканевых областях.
    • Даны практические рекомендации по выбору режимов работы описанных в диссертации аппликаторов, в частности с учетом дополнительного поглощающего элемента контактных СВЧ-систем (болюса) и возможных интерстициальных инъекций солевых растворов для коаксиальных излучателей.
    • Разработана конструкция согласующего перехода для возбуждения коаксиального аппликатора малого диаметра и найдены его электродинамические характеристики.
    • Результаты диссертационной работы были использованы в учебном процессе на кафедре радиотехники СГТУ при чтении курсов «Компьютерное проектирование и моделирование антенно-фидерных трактов», «Основы компьютерного проектирования радиоэлектронных систем», «Методы моделирования и оптимизации» для студентов специальностей 210601 и 210700.62.
    • Результаты диссертации были использованы в НИОКР программы «Участник моло­дежного научно-инновационного конкурса 2011» (У.М.Н.И.К) по проекту «Разработка метода и оборудования для локальной гипертермии биологических тканей» (государственный контракт 9553р/14177 от 04.07.2011 года)

Основные положения и результаты, выносимые на защиту:

  1. Для повышения точности математического моделирования процессов микроволновой абляции злокачественных новообразований, необходимо учитывать нелинейную связь дифференциальных уравнений электродинамики и теплопроводности для биологических сред (in vivo), в виде интерполяционной зависимости комплексной диэлектрической проницаемости биоткани от температуры, а также параметры СВЧ-источника.
  2. Разработанные конструкции волноводного аппликатора контактного типа, выполненного на цилиндрическом волноводе с Т-ребрами и диаметром апертуры 92 мм, обеспечивающего гипертермию биологических тканей на глубину до 30 мм на частоте 915 МГц.
  3. Результаты исследований ЭМ и тепловых полей в ближней зоне коаксиального штыревого аппликатора с рабочей частотой 2,45 ГГц, обеспечивающего уровень отраженной мощности |S11| < 0,2, предназначенного для облучения СВЧ-энергией малоразмерных опухолей (до 20 мм).

Апробация работы





Основные результаты докладывались и обсуждались на Международной научно-технической конференции «Математические методы в технике и технологиях» (Псков, 2009, Саратов, СГТУ, 2010, 2011), Международной научно-технической конференции «Актуальные проблемы электронного приборостроения АПЭП-2010» (Саратов, СГТУ, 2010), Международной научной конференции «Saratov Fall Meeting, SFM2008» (Саратов, СГУ, 2008), научно-технической конференции «Электронная и вакуумная техника: приборы и устройства, технология, материалы» (Саратов, ФГУП НПП «Контакт», 2007) и на научных семинарах факультета электронной техники и приборостроения Саратовского государственного технического университета имени Гагарина Ю.А. По материалам работы принято положительное решение (от 8.06.2012) о выдаче патента на изобретение «Контактный микроволновый аппликатор» (заявка № 2011122886 от 06.06.2011г.) и подана заявка на полезную модель «Коаксиальный излучатель для микроволновой терапии биологических тканей» № 2012109132 от 11.03.2012 г.

Достоверность результатов диссертации подтверждается корректностью формулировок задач математической физики и принятых допущений, а также соответствием значений, полученных разными численными методами, и сравнительной проверкой теоретических и экспериментальных данных.

Методы исследования

В работе были использованы: метод конечных элементов (МКЭ), метод конечных разностей во временной области (МКРВО), метод последовательных приближений, экспериментальный метод прямого измерения коэффициента отражения СВЧ-многополюсников, методы теории диэлектрических смесей.

Публикации и вклад автора

По теме диссертации опубликовано 12 научных работ, из них 4 статьи – в научных изданиях из перечня ВАК, а также 1 патент на изобретение. Большая часть исследований и расчетов проведена автором самостоятельно.

Структура и объем работы

Диссертация состоит из введения, 4 глав, заключения, списка использованной литературы (130 наименований) и приложения. Текст диссертации изложен на 148 страницах, включающих 51 рисунок и 23 таблицы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении изложена актуальность темы, представлены теоретическая и методологическая основа диссертационного исследования, научная новизна и основные результаты, практическая значимость работы, показана апробация работы, перечислены основные положения, выносимые на защиту.

В первой главе проведен обзор существующих методов теплового воздействия на биологические среды и средств их технической реализации, проанализированы тенденции дальнейшего развития систем микроволновой гипертермии и абляции.

В частности, показано, что для локальной гипертермии создано достаточно много неинвазивных систем и устройств, в том числе специальные резонаторные камеры, микрополосковые и волноводные антенные излучатели (аппликаторы) различных типов. В качестве контактных микроволновых аппликаторов (КМА) очень часто используются стандартные прямоугольные волноводы (ПрВ), основным недостатком которых является увеличение апертуры при переходе на рабочие частоты 915 и 433 МГц. Чтобы уменьшить габаритные размеры таких устройств, их приходится заполнять водой либо другими средами с высокой диэлектрической проницаемостью . При этом уровни отраженной мощности достаточно высоки и для ее компенсации необходимы дополнительные микроволновые элементы, такие как ферритовые циркуляторы и согласованные нагрузки.

Еще одна проблема реализации данных СВЧ-устройств связана с необходимостью фокусировки ЭМ поля в заданной области внутри биологического объекта. Для этого в КМА на ПрВ применяют тонкие металлические пластины, ориентированные в Е-плоскости и образующие линзу. При возбуждении основной волны Н10 в ПрВ с помощью этих пластин удается сформировать максимум ЭМ поля на определенной глубине от поверхности диссипативной среды, но при этом появляются дополнительные (паразитные) зоны нагрева, контроль которых весьма затруднен.

Одним из путей решения всех этих проблем стало применение волноводов сложных сечений в качестве базовых элементов КМА. Их уникальные характеристики – высокая критическая длина волны основного типа, низкое волновое сопротивление, концентрация электрического поля в центральной части апертуры и т.д. – делают их привлекательной альтернативой стандартным волноводам. Развитие данного направления сдерживается недостаточной изученностью подобных линий передачи и сложностью их изготовления. Еще один недостаток волноводов сложных сечений – низкая пробивная мощность – не является сдерживающим фактором, так как в медицинских аппликаторах уровень рабочих мощностей обычно не превышает 200 Вт.

Для абляции атипичных биотканей в настоящее время используются как монопольные, так и дипольные излучатели в коаксиальном или интегральном исполнении. Коаксиальные дипольные аппликаторы чаще всего имеют одну или несколько щелей, для вывода СВЧ-энергии. Наиболее перспективным методом компенсации отраженной мощности для таких устройств считается применение специальных дроссельных элементов, что усложняет конструкцию. Диаметр зоны коагуляции для дипольных излучателей обычно не превышает 4 см. Для формирования более обширной зоны нагрева можно использовать несколько аппликаторов, расположенных определенным образом в опухоли и синхронизированных по фазе.

Основной проблемой применения монопольных коаксиальных аппликаторов для СВЧ-абляции является вытянутая зона коагуляции на рабочей частоте 915 МГц, что обусловлено необходимостью компенсации отраженной ЭМ волны за счет увеличения длины штыревого излучателя антенны. Такая форма области нагрева оказывается полезной только для редких случаев, встречаемых в медицинской практике.

Проведенные обзор и анализ характеристик созданных к настоящему времени контактных и интерстициальных микроволновых аппликаторов позволили определить направления дальнейших научных исследований в данной области, а также пути поиска новых конструкционных решений, нацеленных на усовершенствование подобных СВЧ-устройств.



Pages:   || 2 | 3 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.