авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |

Разработка методов и средств повышения точности градуировки приемников звукового давления в водной среде в условиях свободного поля

-- [ Страница 1 ] --

На правах рукописи

Исаев Александр Евгеньевич

Разработка методов и средств повышения точности градуировки приемников звукового давления в водной среде в условиях свободного поля

05.11.15 Метрология и метрологическое обеспечение

05.11.06 Акустические приборы и системы

Автореферат диссертации

на соискание ученой степени доктора технических наук

Менделеево - 2010

Работа выполнена в Федеральном государственном унитарном предприятии «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»)

Официальные оппоненты:

Доктор технических наук Кузин Александр Юрьевич
Доктор физико-математических наук Гордиенко Валерий Александрович 
Доктор технических наук Салин Борис Михайлович 

Ведущая организация -

Федеральное государственное учреждение «32 Государственный научно-исследовательский испытательный институт Министерства Обороны Российской Федерации» (ФГУ «32 ГНИИИ Минобороны России»)

Защита состоится « » сентября 2010 г. в ____ часов на заседании диссертационного совета Д 308.005.01 в ФГУП «ВНИИФТРИ»

141570 п/о Менделеево, Солнечногорский район, Московская обл.,

тел. 8( 495) 744-81-12, 8 (495) 944-52-86

С диссертацией можно ознакомиться в библиотеке ФГУП «ВНИИФТРИ»

Автореферат разослан « » ___________ 2010 г.

Ученый секретарь диссертационного совета,

кандидат технических наук Иванова Ю.Д.

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Диссертационная работа посвящена совершенствованию государственной системы обеспечения единства гидроакустических измерений.

Работа включает результаты исследований и разработки методов и средств повышения точности воспроизведения и передачи единицы звукового давления в водной среде в условиях свободного поля, полученные автором при выполнении в ФГУП «ВНИИФТРИ» работ, предусмотренных комплексной программой метрологического обеспечения предприятий и организаций судостроительной промышленности и Министерства обороны РФ, комплексной программой развития государственной системы метрологического обеспечения гидрофизических и гидроакустических измерений «Метрология-М», при создании эталонной базы ведомственной системы обеспечения единства измерений звукового давления в водной среде (Постановление Правительства РФ № 125-10 от 21.02.02 г.), выполнении ряда НИР и ОКР.

1.1. Актуальность исследования

Метрологическое обеспечение гидроакустических измерений является одним из основных направлений научно-технической деятельности ВНИИФТРИ как Государственного метрологического центра РФ.

Работы по созданию первых измерительных установок для градуировки гидрофонов начинались во ВНИИМ им. Д.И. Менделеева и были продолжены во ВНИИФТРИ под руководством И.Г. Русакова, а впоследствии А.Н. Голенкова. К концу 60-х годов были достигнуты значительные успехи в разработке оригинальных методов градуировки гидрофонов. В 19651968 гг. лаборатория гидроакустических измерений ВНИИФТРИ успешно участвовала в международных сличениях национальных эталонов, по результатам которых вошла в число лабораторий, лидирующих в этой области. Разработанные А.Н. Голенковым и Л.Е. Павловым методы градуировки гидрофонов в камере малого объема были стандартизованы МЭК и принесли ВНИИФТРИ международное признание.



Разработка эффективных методов и средств воспроизведения звукового давления и градуировки гидрофонов позволили создать первые в России эталоны (ГЭТ 55-74, ГЭТ 103-76, ВЭТ 55-1-80 и ВЭТ 55-1-84), образцовые средства измерений (СИ) и оснастить ими ведомственные метрологические службы. Была сформирована государственная система и завершен первый этап работ по обеспечению единства гидроакустических измерений в стране. Единство измерений регламентировалось ГОСТ 8.23377, МИ 162087, локальной поверочной схемой НПО «ВНИИМ», которые определяли порядок передачи единицы звукового давления в водной среде 45 исходным и образцовым установкам, а также рабочим СИ в диапазоне частот от 0,01 Гц до 200 кГц.

Одним из стимулов динамичного развития гидроакустических измерений являются задачи обеспечения безопасности корабля. Современные требования к подводной шумности находятся на пределе технических возможностей производителя, что при больших затратах на создание корабля требует высокой достоверности при оценке соответствия параметров его шумоизлучения норме, устанавливаемой при испытаниях. Высокая точность измерения уровней подводного шумоизлучения (УПШ) позволяет приблизить значение контрольного допуска к заданной норме и снизить риски производителя и потребителя. Неуклонное снижение уровней подводного шумоизлучения породило проблему измерений при соотношении сигнал/помеха меньше единицы и поставило перед метрологами принципиально новые и чрезвычайно сложные задачи по созданию нового класса измерительных систем, методов когерентной пространственно-временной обработки, обеспечивающих высокую помехозащищенность при получении детального акустического «портрета» объекта и среды. В таких условиях метрологическое обеспечение гидроакустических измерений стало ключевой задачей в проблеме достоверной оценки уровня паритета отечественных и мировых достижений. Большой вклад в развитие методов измерения характеристик акустического поля корабля внесли ученые ВНИИФТРИ: Маслов В.К., Бухштабер В.М., Трохан А.М., Теверовский В.И., Цыганков С.Г., Некрасов В.Н., Торопов В.Н. и другие.

Об уровне развития и большом внимании, уделяемом гидроакустическим измерениям за рубежом, свидетельствует тот факт, что за последние 30 лет точность национальных эталонов увеличилась в 5-7 раз. Расхождения участников, показавших лучшие результаты на международных сличениях в 1965-1968 гг., достигали 3 дБ. Опорные значения на ключевых сличениях 2000-2003 гг. фактически определили участники, заявившие расширенные неопределенности результатов измерений от 0,3 до 0,4 дБ.

Уже к концу 80-х годов созданные эталоны и поверочные схемы не смогли в полной мере соответствовать выдвигаемым практикой требованиям к точности рабочих СИ. Ужесточение показателей достоверности измерений, как в лабораторных, так и в натурных условиях, усложнило задачи метрологического обеспечения, привело к необходимости разработки и создания нового Государственного эталона ГЭТ 55-91, гидрофонов -эталонов 1-го разряда с улучшенными характеристиками, автоматизированных рабочих эталонов для градуировки гидрофонов, новой поверочной схемы МИ 1620-92 с элементами децентрализации.

Изменения законодательства в области метрологии, принятие законов «Об обеспечении единства измерений» и «О техническом регулировании», Постановление Правительства № 100 1994 г. и Постановление Госстандарта РФ № 10 1997 г. потребовали существенной модернизации и развития всей системы обеспечения единства гидроакустических измерений в России. Для решения поставленных задач была разработана долговременная комплексная программа развития государственной системы метрологического обеспечения гидрофизических и гидроакустических измерений, объединившая 45 научно-исследовательских и опытно-конструкторских работ, направленных на обеспечение нужд потребителей с учетом перспективы. Достижения в этой области в значительной мере связаны с деятельностью ученых-метрологов ВНИИФТРИ: Сильвестрова С.В., Енякова А.М., Платонова В.А., Черникова В.З., Некрича С.Ф., которым автор признателен за многолетнее и плодотворное сотрудничество.

Необходимость снижения погрешности рабочих СИ заставила повысить точность государственных первичного и вторичного эталонов в 23 раза, значительно расширить частотный диапазон градуировки по полю в область низких частот (с 3,15 кГц до 250 Гц), создать рабочие эталоны 2-го разряда для градуировки измерительных гидрофонов с погрешностью 0,61 дБ, разработать методы и создать специализированные эталоны для градуировки гидроакустических модулей (ГМ), применяемых для измерения УПШ в морских условиях.

С технической стороны проблема повышения точности градуировки гидрофонов по полю усложнена большим числом факторов, влияющих на погрешность измерений: широкий частотный и динамический диапазоны измеряемой величины, соизмеримость уровней полезного сигнала и случайной помехи, перекрестное влияние излучающего и приемно-измерительного трактов, искажения сигнала переходными процессами, искажения звукового поля рассеянием, неидеальность характеристик преобразователей, нестабильность среды распространения акустического сигнала, непредсказуемость параметров неконтролируемых факторов, таких, как вибрации, шумы, электромагнитные наводки, а также большое число других разнородных факторов, влияние которых исключить либо минимизировать весьма сложно.

Научная сторона проблемы обусловлена тем, что возможности повышения точности процедур градуировки, изложенных в стандарте МЭК 565 1974 г., на сегодня оказались практически исчерпанными. Метод взаимности для градуировки гидрофонов, разработанный Маклеаном и Куком в 1940-41 гг., всесторонне и тщательно исследован. Совершенствование техники измерений привело к тому, что основным фактором, определяющим точность эталонов (градуировки гидрофона) стали искажения поля, обусловленные рассеянием звуковой волны, ослабить которое в достаточной мере не удавалось. Известные электроакустические и электромеханические модели не учитывают влияние рассеяния на элементах конструкции реального гидрофона и систем его крепления. Представление излучателя и приемника в стандартных процедурах градуировки как точечных (координатами акустических центров излучения и приема) вынуждает учитывать рассеяние как источник погрешности, но не позволяет исключить его влияние на результат градуировки. Таким образом, рассеяние звуковой волны и несовершенство стандартных измерительных процедур относятся к числу основных факторов, препятствующих повышению точности градуировки гидроакустических приемников по полю. Принятый в 2006 г. стандарт МЭК 60565 не содержит существенных новшеств, касающихся измерений в свободном поле. Это является наглядным свидетельством существования проблемы, обусловленной отсутствием новых идей и подходов, которые позволяли бы существенно повысить точность градуировки гидрофона по полю, и актуальности исследований в этом направлении.

Повышение точности и поддержание соответствия характеристик государственного первичного эталона уровню лучших мировых достижений приобрели особую значимость с подписанием в 1999 г. метрологическими институтами Госстандарта (Ростехрегулирования) Соглашения о взаимном признании национальных эталонов и сертификатов калибровок и измерений, выдаваемых национальными метрологическими институтами. Необходимость постоянного подтверждения на международном уровне измерительных и калибровочных возможностей в области гидроакустических измерений явилась дополнительным стимулом повышения точности не только воспроизведения звукового давления в водной среде, но и передачи единицы рабочим СИ.

Следует считать, что улучшение метрологических характеристик действующего государственного первичного эталона, создание первичного эталона нового поколения, разработка современных методов и высокоточных средств для воспроизведения и передачи единицы звукового давления рабочим СИ, совершенствование звеньев поверочной схемы являются весьма актуальными задачами, составляют научную и техническую основу развития государственной системы обеспечения единства гидроакустических измерений, непосредственно связаны с темпами научно-технического прогресса и требуют постоянных активных усилий.

1.2. Цель и задачи исследования

Целью работы является совершенствование системы обеспечения единства и достоверности гидроакустических измерений, расширение возможностей и повышение точности градуировки гидроакустических измерительных приемников на частотах от сотен Гц до 1 МГц, включая:





- повышение точности градуировки гидроакустических измерительных приемников в условиях свободного поля;

- расширение частотного диапазона градуировки по полю в область низких частот;

- обеспечение возможности градуировки в лабораторном бассейне гидрофонов совместно с носителем, применяемым в условиях морской акватории.

Поставленная цель потребовала решения ряда исследовательских и научно-технических задач:

- выявление доминирующих источников погрешности при градуировке приемников звукового давления в водной среде по полю;

- разработка методов определения параметров источников рассеяния на преобразователях и подводных конструкциях эталона;

- разработка алгоритма оценивания передаточного импеданса излучателя и приемника в невозмущенном поле сферической волны по результатам измерений в поле, искаженном рассеянной волной;

- создание модифицированной процедуры градуировки гидрофона по полю методом взаимности, исключающей влияние рассеяния на погрешность градуировки;

- реализация в эталонных установках техники когерентного накопления, излучения и приема сигналов и их квадратурных дополнений;

- разработка измерительной процедуры для градуировки гидрофона по полю в незаглушенном бассейне при использовании непрерывного излучения;

- введение понятия чувствительности в полосе частот и формулировка на основе этого понятия определения чувствительности приемника звукового давления, применяемого для измерений уровней подводного шума;

- обоснование возможности и разработка метода градуировки в полосах частот гидроакустического измерительного модуля, область ближнего поля которого превышает размеры рабочей зоны лабораторного бассейна;

- создание эталонных измерительных установок, реализующих разработанные автором методы, их метрологическое исследование и применение в составе эталонов всех уровней (от государственного первичного до рабочего 2-го разряда).

1.3. Основные научные результаты работы

1) Разработана новая методика градуировки гидрофонов по полю, основанная на представлении излучателя и приемника в виде систем, состоящих из акустического центра излучения (приема) и эквивалентных локализованных источников рассеяния, а также на разработанном методе определения параметров источников с использованием согласованной пространственной фильтрации зависимости передаточного импеданса от расстояния между излучателем и приемником.

2) Предложен способ расширения частотного диапазона градуировки гидрофона по полю в бассейне с минимальным размером 6 м в область низких частот с 3,15 кГц до 0,5 кГц, заключающийся в уменьшении крутизны наклона частотной характеристики излучения в сочетании с использованием широкополосного приема и когерентного накопления тонально-импульсного сигнала и его квадратурного дополнения.

3) Теоретически обосновано и экспериментально подтверждено, что использование предложенного и нетрадиционного для гидроакустики понятия чувствительности в полосе частот применительно к гидрофону для измерений уровней шумоизлучения позволяет:

- уменьшить погрешность гидроакустического спектрометра за счет учета неравномерности частотной характеристики гидрофона в частотной полосе фильтра,

- обеспечить возможность градуировки в лабораторном бассейне приемника, область ближнего поля которого превышает по протяженности размеры рабочей зоны бассейна,

- определять чувствительность в полосе частот расчетным путем по подробной частотной характеристике приемника вне зависимости от вида используемого сигнала и способа получения частотной характеристики.

4) Предложен метод скользящего комплексного взвешенного усреднения частотной зависимости системы излучатель – отражающий бассейн – приемник, позволяющий получать при непрерывном излучении полосового сигнала детальные частотные характеристики излучателя и приемника в свободном поле с точностью, не уступающей условиям тонально-импульсного излучения. Применение метода позволяет расширить диапазон градуировки гидрофонов по полю в бассейне с минимальным размером 6 м в область низких частот до 250 Гц.

5) Показано, что при градуировке приемника звукового давления по полю минимальное расстояние между излучателем и приемником определяется протяженностью формируемой приемником области вторичного излучения. На основании исследованной автором зависимости эффективного размера приемника в полосах частот от ширины полосы частот показана возможность существенно сократить расстояние между излучателем и приемником при градуировке в 1/nоктавных полосах частот. Это позволило автору разработать метод градуировки и впервые в отечественной практике градуировать в лабораторном бассейне в стандартных 1/3октавных полосах частот крупногабаритные гидроакустические модули (ГМ).

6) Исследованная автором зависимость характеристики направленности ГМ в полосах частот от удаленности источника вторичного излучения относительно точки приема позволила разработать метод определения эффективного размера ГМ в 1/n-октавных полосах частот, не применяя сложных измерительных процедур акустической голографии для реконструкции пространственной структуры формируемой ГМ области вторичного излучения.

7) Проведенные метрологические исследования и участие в международных ключевых сличениях CCAUV.W-K1 позволили автору обосновать и подтвердить бюджет составляющих неопределенности калибровки гидрофонов в условиях свободного поля с наименьшей среди участников ключевых сличений стандартной расширенной неопределенностью.

Таким образом, основные научные результаты работы являются научным обоснованием разработанных научно-технических решений, внедрение которых вносит значительный вклад в совершенствование государственной системы обеспечения единства гидроакустических измерений и, прежде всего, эталонной базы для воспроизведения и передачи единицы звукового давления рабочим средствам измерения на более высоком уровне точности, ориентированном на современные и перспективные требования науки и практики, в том числе военной гидроакустики.

1.4. Теоретическая и методологическая основа исследований

Теоретическую и методологическую основу исследований составили научные труды отечественных и зарубежных авторов в области метрологии, гидроакустических измерений, измерений в воздушной акустике, теории радиотехнических систем, радиолокации и голографии, методы обработки измерительных данных, а также проведенные соискателем экспериментальные и теоретические исследования, математическое и физическое моделирование, макетирование основных узлов разрабатываемых эталонных СИ, метрологические исследования разрабатываемых методов и СИ для выявления источников их погрешностей, составление и обоснование бюджета неопределенностей, анализ результатов международных и ключевых сличений.



Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.