авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:     | 1 || 3 | 4 |   ...   | 7 |

Формирование систем математических понятий у учащихся общеобразовательных школ

-- [ Страница 2 ] --

Конкретно-научный уровень методологии исследования представляют системный и деятельностный подходы, а также современные психолого-педагогические, дидактические концепции обучения (Л.С. Выготский, С.Л. Рубинштейн, П.П. Блонский, Е.Н. Кабанова-Меллер, А.А. Люблинская, Л.В. Занков, П.Я. Гальперин, Н.Ф. Талызина, Л.В. Берцфаи, В.В. Давыдов, А.З. Рахимов и др.)

Ведущая идея теоретической концепции исследования заключается в следующем: качественное усвоение систем фундаментальных математических понятий и развитие творческого мышления учащихся достигается через отражение в содержании и структуре теоретических знаний и целостной модели их формирования характера и структуры соответствующей познавательной деятельности обучаемых, активизируемой и развиваемой целенаправленным руководством обучающего.

Для решения поставленных в исследовании задач, а также подтверждения исходных положений и проверки гипотезы исследования использовалась совокупность взаимодополняющих методов исследования:

  • теоретических: изучение и теоретический анализ литературы в области математики и истории математики, философии и логики, дидактики и теории и методики обучения математике (и других частных методик); нормативных документов, монографий, диссертаций, материалов международных, всероссийских и республиканских научно-практических конференций, связанных с проблемой исследования, школьных программ, учебников, учебных пособий по математике для учащихся средней школы; теоретико-методологический анализ содержания современного школьного математического образования; логико-дидактический и системно-структурный анализы учебного материала; научное моделирование систем фундаментальных математических понятий;
  • эмпирических: изучение и обобщение массового и передового педагогического опыта учителей математики; сравнение, обобщение, классификация, синтез психолого-педагогических концепций обучения; анализ многолетней педагогической деятельности автора исследования; анкетирование, тестирование, интервьюирование (учащихся и учителей); педагогический эксперимент по проверке эффективности разработанной методики формирования теоретических систем понятий; статистическая и качественная обработка полученных результатов.

На основе анализа научно-методической литературы, собственного опыта педагогической деятельности была построена логика исследования, состоящая из четырех этапов, на каждом их которых рассматривалась одна из частных проблем в тесной связи с другими.

Первый этап (организационно-подготовительный) - (1985-1993 гг.). Изучение философской, психолого-педагогической, научно-методической литературы, нормативно-программной и учебно-методической документации. Изучалось состояние проблемы в теории и практике обучения математике, осуществлялся ее разносторонний анализ, разрабатывались и проверялись методики изучения ведущих тем и разделов школьного курса математики: «Линейная функция», «Квадратные уравнения», «Неравенства», «Тождественные преобразования выражений», «Тригонометрические функции, уравнения и неравенства», «Производная и ее применение», «Показательная и логарифмическая функции» и другие. Осуществлялось локальное структурирование и моделирование систем математических понятий. Это позволило выделить и сформулировать проблему, определить объект и предмет исследования.



Второй этап (поисково-теоретический) – (1994-1999 гг.). Уточнение гипотезы исследования, изучение многих аспектов проблемы; определение теоретических основ и направлений совершенствования процесса формирования фундаментальных математических понятий и их систем; проведение констатирующего эксперимента и обработка его результатов; экспериментальная проверка результативности разработанной методики в общеобразовательных учреждениях различных городов и регионов.

Третий этап (содержательно-процессуальный) – (1999-2003 гг.). Разработана концепция продуктивного формирования систем фундаментальных математических понятий и создана прогностическая модель целостного процесса формирования понятий и их систем; полностью выполнен констатирующий эксперимент и обобщены его результаты. Проведен формирующий эксперимент, в котором приняло участие свыше 4000 учащихся различных регионов; осуществлена экспериментальная проверка целостной методики формирования теоретических систем понятий: «Уравнения и неравенства», «Функции, уравнения, неравенства», «Функции и их исследование с помощью различных научных теорий» «Функции, производная, интеграл»; осуществлена оценка эффективности разработанной методики.

Четвертый этап (аналитический, завершающий) – (2003-2009 гг.). Завершен формирующий эксперимент, произведены систематизация и обобщение научных результатов, их качественно-статистический анализ; сформулированы выводы; осуществлена публикация основных результатов исследования в центральных научных изданиях, рекомендованных ВАК РФ; осуществлено внедрение в учебный процесс теоретических основ и целостной методики формирования теоретических систем понятий.

Опытно-экспериментальной базой исследования были общеобразовательные учреждения гг. Великого Новгорода, Новгородской области, Саратова, Саратовской области (гг. Петровск, Аткарск), Магнитогорска, Уфы, ряда регионов Башкортостана (Мелеузовский, Аургазинский, Абзелиловский и др.), Алматы, Рязани, Нальчика и др.

Личный вклад диссертанта состоит в теоретической разработке концептуальных идей и положений исследования, непосредственном руководстве и осуществлении длительной опытно-экспериментальной работы в качестве преподавателя педвуза и университета, учителя математики, педагога Областного автономного образовательного учреждения дополнительного профессионального образования (повышение квалификации специалистов) «Новгородского института развития образования».

Научная новизна исследования:

  • выполнены логико-гносеологический и методологический анализы содержания общего математического образования;
  • разработана и реализована концепция продуктивного формирования фундаментальных математических понятий и их систем в современном обучении, основу которой составляют системный и деятельностный подходы, а также диалектический метод обучения и учебного познания – восхождения от абстрактного к конкретному;
  • в рамках разработанной концепции создана прогностическая модель целостного процесса формирования систем фундаментальных математических понятий; модель воедино связывает содержательно-целевой, процессуально-деятельностный, контрольно-оценочный и оценочно-результативный компоненты процесса формирования систем понятий;
  • разработанная нами концепция и созданная на ее основе прогностическая модель ориентированы на образование, дальнейшее развитие и интеграцию теоретических систем математических понятий;
  • разработаны и обоснованы новые методические подходы к изучению и применению математического языка в процессе обучения математике.

Теоретическая значимость настоящего исследования заключается в решении актуальной и крупной научной проблемы создания теоретических основ и технологии формирования систем понятий в обучении математике, соответствующей современным социальным требованиям. На основе разностороннего и многоуровневого анализа данной проблемы:

  • даны логико-гносеологическая и методологическая характеристика фундаментальных математических понятий, определена их природа, выделены функции и связи понятий, механизмы образования и развития;
  • определены принципы отбора понятий и оценочные параметры для их логико-дидактического анализа, разработана классификация систем понятий;
  • разработана модель целостного процесса формирования фундаментальных математических понятий и их систем в современном обучении математике;
  • разработана целостная методика формирования теоретических систем понятий, реализующая принципы: системности, обобщенности, функциональности понятий, интенсификации процесса формирования теоретических систем понятий, активизации понятийно-теоретической деятельности учащихся в обучении математике;
  • выделены уровни и этапы формирования фундаментальных понятий и их систем, что позволило реализовать основные функции понятий: обобщающую, систематизирующую, объяснительную, эвристическую, развивающую, прогностическую;
  • разработана типология учебных задач и учебных действий, на основе и с помощью которых осуществляется целостный процесс формирования теоретических систем понятий;
  • определены принципы отбора математических задач (алгоритмических, полуалгоритмических, полуэвристических, эвристических), включающих учащихся в активную познавательную деятельность по усвоению и применению фундаментальных математических понятий.

Практическая значимость исследования:

  • разработанная автором теоретическая концепция формирования математических понятий и их систем может широко применяться и в других школьных предметах, а также и в вузовских курсах;
  • универсальный характер результатов и материалов исследования позволяет использовать их при разработке новых учебных программ и совершенствовании действующих по различным предметам, альтернативных авторских программ, учебных пособий по многоуровневому математическому образованию; образовательных стандартов школьного и вузовского образования;
  • представлены научно обоснованные материалы, которые могут использоваться преподавателями высших учебных заведений, институтов повышения квалификации кадров при разработке лекций по методологическим проблемам совершенствования образования, обновлении содержания лекционных курсов психолого-педагогических и специальных дисциплин, в научно-исследовательской работе студентов, магистрантов, аспирантов и педагогов-практиков;
  • основные идеи и положения исследования получили положительную оценку учителей-практиков различных регионов (Великий Новгород, Саратов, Рязань, Уфа, Нальчик, Алматы и др.). Материалы исследования отражены в выпускных квалификационных (27) и курсовых работах (106) студентов выполненных под руководством автора исследования, в монографии, учебно-методических пособиях, рекомендациях, научных статьях, изданных по результатам исследования, которые нашли применение в математическом образовании школьников, студентов и в системе подготовки и повышения квалификации педагогических кадров.

Достоверность и обоснованность научных положений, выводов и рекомендаций обеспечивались согласованностью их с фундаментальными положениями теории познания, методологии математики, дидактики, психологии, педагогической акмеологии; многосторонним и многоуровневым качественным и количественным анализом большого фактологического материала, полученного в процессе исследования; применением совокупности взаимосвязанных и взаимозависимых теоретических и эмпирических методов исследования, адекватных целям и задачам; массовым характером констатирующего и формирующего педагогического эксперимента и его позитивными результатами, их глубоким анализом и обобщением, статистическими методами обработки, широкой апробацией результатов исследования.

Апробация и внедрение результатов исследования. Основные результаты исследования внедрены в практику работы школ через монографию, учебно-методические пособия, методические рекомендации, научные статьи, доклады и тезисы, предназначенные научным сотрудникам, преподавателям, аспирантам и студентам педвузов и университетов, а также учителям математики. Работы опубликованы в Москве, С.-Петербурге, Великом Новгороде, Варшаве, Чебоксарах, Челябинске, Перми, Екатеринбурге, Уфе, Кирове, Архангельске, Казани, Самаре, Ростове-на-Дону, Твери, Тольятти, Костроме, Воронеже, Красноярске, Калуге, Тамбове и др.

На основе разработанных теоретических положений, конкретной ме­тодики и результатов выполненного исследования разработаны отдельные лекции по курсу теории и методики обучения математике, которые многие годы читаются студентам - будущим учителям математики и физики Новго­родского государственного университета имени Ярослава Мудрого. Также разработан и читается студентам спецкурс «Современные педагогические технологии». Многие теоретические положения исследования и конкретная методика составили основу лекций для учителей различных предметов, директоров школ по формированию теоретических систем понятий, по их дальнейшему обобщению и систематизации, читаемых в многоэтапном цикле лекций в ОАОУ профессионального образования (повышения квалификации специалистов) в «Новгородском институте развития образования»; на курсах повышения квалификации учителей математики (гг. Великий Новгород, Старая Русса, Боровичи, Валдай, Пестово, Малая Вишера, Окуловка, Магнитогорск, Саратов, Уфа, Алматы, Элиста, Кокчетав).





Материалы диссертации обсуждались с ведущими специалистами страны в области дидактики, психологии, частных методик и многократно докладывались на научных и научно-практических конференциях международного, российского и регионального уровня: Москва (1990, 1994, 2000, 2001), Челябинск (1988-2009), Алматы (1990, 1992), Казань (1992), Воронеж (2003), Киров (1994, 2004, 2006, 2009), Вологда (2001, 2006), Тюмень (1991), Уфа (1989, 1990, 2000, 2005, 2007, 2008), Красноярск (1993), Саранск (1995, 1998), Тверь (1995, 2003, 2006), Архангельск (1985, 1987, 1999), Сыктывкар (1988), С.-Петербург (1984-1991, 1993, 1996-1998, 2004), Великий Новгород (1988, 1989, 1997, 2000), Брянск (1999), Тольятти (2003, 2005, 2007, 2009), Минск (1985-1988, 1992), Ульяновск (1991), Липецк (1993), Самара (2007), Пермь (2008), Чебоксары (2007-2009).

Результаты исследования также докладывались на научных семинарах Института математики и информатики Новгородского государственного университета имени Ярослава Мудрого, Башкирского государственного педагогического университета имени М. Акмуллы, факультета математики и информатики Вятского государственного гуманитарного университета, факультета педагогического образования Московского государственного университета имени М.В. Ломоносова.

Основные положения, выносимые на защиту:

  1. Исходная идея и принципы разработки теоретических основ и методики формирования систем фундаментальных математических понятий. Идея заключается в том, что системно-структурная организация содержания систем фундаментальных понятий, отражающая адекватную структуру деятельности учителя и учащихся, повысит обобщенность и функциональность понятий в обучении, и продуктивность познавательной деятельности учащихся.
  2. Концепция продуктивного формирования математических понятий и их систем в современном обучении (обоснованный отбор и структурирование понятийного содержания, повышение роли и значимости математического языка, функций понятий; выделение учебных задач, в ситуациях которых происходит овладение теоретически обобщенными структурами понятий, систем понятий).
  3. Прогностическая модель целостного процесса формирования систем понятий в обучении математике, содержащая компоненты: содержательно-целевой, процессуально-деятельностный, контрольно-оценочный, оценочно-результативный и их взаимосвязи.
  4. Структурно-содержательные модели систем понятий - как ориентиры организации учебно-познавательной деятельности учащихся.
  5. Целостная методика формирования систем фундаментальных математических понятий и управление учебно-познавательной деятельностью учащихся по их овладению.

Структура и основное содержание работы: диссертация состоит из введения, четырех глав, заключения и библиографического списка из 346 наименований, приложения. Объем диссертации составляет 339 страниц машинописного текста. В диссертации 18 приложений общим объемом 65 страниц.

Во введении обоснована актуальность темы исследования; определены объект, предмет, цель, гипотеза и задачи исследования; изложены методологические основы исследования и описаны этапы его осуществления; констатирована достоверность полученных результатов; раскрыты научная новизна, теоретическая и практическая значимости исследования; сформулированы положения, выносимые на защиту, показаны направления апробации и внедрение полученных результатов.

В первой главе «Методология формирования понятий и их систем в школьном курсе математики» представлен разноаспектный анализ объекта и предмета исследования: социально-педагогический и логико-гносеологический, что объясняется, прежде всего, сложной природой математических понятий, научным характером их изучения, потребностью представить методологию исследования.

Формирование понятий любого предмета - важнейшая задача современного школьного образования. Перед учеными различных научных направлений встают проблемы творческого развития учащихся, раскрытия механизмов сознания и использования этих механизмов как опорных средств, по которым развивающийся интеллект ученика достигнет вершин познания.

Специфические черты математики как науки и как учебного предмета определяют ее особое положение в ряду базисных направлений развития личности, ибо, образовательный, воспитательный и развивающий потенциалы математики безграничны.

Методологические, психолого-педагогические, дидактические исследования последних десятилетий показали, что любое образование, и, прежде всего математическое, не может быть сведено к передаче обучаемым базы готовых знаний. В век быстрого нарастания научной информации наука и обучение делают ставку на общие теоретические системы понятий, формирование которых должно происходить в процессах активной и напряженной деятельности учащихся (Б.В. Гнеденко, Н.Х. Розов, Е.М. Вечтомов, В.С. Библер, Е.К. Войшвилло, Б.М. Кедров, А.И. Уемов, В.В. Давыдов, Н.Ф. Талызина, В. Оконь, А.З. Зак, А.К. Маркова, Н.И. Кондаков, А.В. Усова, Н.Н. Тулькибаева, В.П. Беспалько, М.Б. Волович, В.А. Извозчиков, Г.Д. Кириллова и др.).

Анализ программ по математике, учебников (действующих и экспериментальных) показал, что до настоящего времени не создано оптимальных условий для качественного формирования и функционирования теоретических систем понятий. Отсюда вытекают проблемы, связанные с построением содержания школьного математического образования: не расширяя объема учебного материала дать учащимся необходимый запас теоретических знаний; раскрыть логико-гносеологическую природу формируемых понятий; способствовать объединению понятий в системы, осуществлять дальнейшее развитие и совершенствование систем, объединяя их в более общие теоретические системы сущностных знаний. При таком подходе на первый план должны выдвигаться взаимосвязанные компоненты: содержательно-целевой, процессуально-деятельностный, контрольно-оценочный и оценочно-результативный.



Pages:     | 1 || 3 | 4 |   ...   | 7 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.