авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Научные основы и технологические решения получения высокопрочных алюминийсодержащих коррозионностойких сталей для мединструмента

-- [ Страница 1 ] --

На правах рукописи

МАЛЬЦЕВА ЛЮДМИЛА АЛЕКСЕЕВНА

НАУЧНЫЕ ОСНОВЫ И ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНЫХ АЛЮМИНИЙСОДЕРЖАЩИХ КОРРОЗИОННОСТОЙКИХ СТАЛЕЙ ДЛЯ МЕДИНСТРУМЕНТА

Специальность 05.16.01 – Металловедение и термическая обработка металлов

А в т о р е ф е р а т

диссертации на соискание ученой степени

доктора технических наук

Екатеринбург – 2008

Работа выполнена на кафедре металловедения ГОУ ВПО

«Уральский государственный технический университет – УПИ»

Научный консультант доктор технических наук, профессор

Грачев Сергей Владимирович

Официальные оппоненты доктор технических наук, профессор

Тарасенко Людмила Васильевна;

доктор физико-математических наук, профессор

Пушин Владимир Григорьевич,

доктор технических наук, профессор

Гузанов Борис Николаевич

Ведущая организация Институт машиноведения УрО РАН

Защита состоится «14» ноября 2008 года в 15 часов на заседании диссертационного совета Д 212.285.04 при Уральском государственном техническом университете по адресу: Екатеринбург, ул. Мира, 19, 3-й учебный корпус, ауд. Мт -329.

С диссертацией можно ознакомиться в библиотеке УГТУ-УПИ. Отзыв в одном экземпляре, заверенный гербовой печатью, просим направлять по адресу: 620002, Екатеринбург, К-2, ул. Мира, 19, ГОУ ВПО УГТУ-УПИ, ученому секретарю университета, тел.(343) 375-45-74, факс (343) 374-38-84.

Автореферат разослан « 10 » сентября 2008 г.

Ученый секретарь

диссертационного совета Шилов В.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В связи с быстрым развитием медицинской техники возникает необходимость создания новых инструментов, в том числе микрохирургических (для офтальмологии, нейрохирургии, сосудистой хирургии). Наиболее важным в создании таких инструментов является выбор материалов, которые бы значительно повышали их качество, надежность, срок службы и улучшали функциональные свойства. Применяемые в настоящее время для изготовления медицинского инструмента коррозионностойкие стали мартенситного класса 30Х13, 40Х13 и аустенитного класса 12Х18Н10Т не всегда удовлетворяют требованиям по обеспечению необходимых высоких прочностных свойств и коррозионной стойкости, а также не обладают достаточной технологичностью для получения проволоки тонких и тончайших сечений.

Таким образом, проблемы в области разработки и изготовлении металлических материалов для медицинских целей продолжают оставаться актуальными до настоящего времени. Это свидетельствует о безусловной важности проведения исследований по разработке новых сталей и сплавов для того или иного вида медицинского инструмента и разработке теоретических и технологических основ их получения.

С учетом специфики функциональных свойств стержневого медицинского инструмента необходимо разрабатывать стали, отвечающие следующим требованиям:

высокой коррозионной стойкости в условиях эксплуатации и хранения;

 высокой прочности (0,2 1800МПа), обеспечивающей надежную работоспособность медицинского инструмента;



 повышенной технологичности, необходимой для производства холоднодеформированной проволоки тонких и наитончайших сечений;

 повышенной теплостойкости для сохранения уровня механических свойств после необходимых или вынужденных нагревов;

стабильности упругих свойств после тепловых обработок.

В связи с вышеизложенным актуальной задачей является разработка новых высокопрочных коррозионностойких материалов для стержневого и лезвийного мединструмента, а также упругих элементов ответственного назначения, выгодно отличающихся большей прочностью, лучшей теплостойкостью и технологичностью, а также высоким сопротивлением коррозии.

Формирование высокопрочного состояния в сталях достигается за счет выбора соответствующих принципов легирования и получения нужного структурного класса материала, а также сочетания и использования различных механизмов упрочнения: твердорастворного упрочнения, деформационного упрочнения в матричных фазах без фазовых переходов, деформационного упрочнения за счет протекания превращения, а также дисперсионного упрочнения с выделением интерметаллидных фаз. Предполагалось разработать новый класс высокопрочных коррозионностойких сталей, в котором успешно могли бы быть реализованы все возможные механизмы упрочнения, необходимые для обеспечения высокого комплекса требуемых свойств на проволоке, предназначенной для изготовления мединструмента.

Цели и задачи работы. Целью работы являлась разработка научных основ создания новых коррозионностойких алюминийсодержащих сталей, способов их упрочнения и технологических режимов получения высокопрочной проволоки, предназначенной для изготовления упругих элементов и медицинского инструмента, обладающих высокой прочностью, коррозионной стойкостью, теплостойкостью и повышенной технологичностью.

Для достижения поставленной цели решались следующие задачи:

1. Разработка принципов легирования и составов принципиально новых сталей для мединструмента, сочетающих высокую прочность, коррозионную стойкость, упругость и теплостойкость.

2. Определение закономерностей изменения структуры на микро- и субмикроскопическом уровне сталей разных структурных классов после различных термических и деформационных обработок.

3. Выявление закономерностей формирования комплекса физико-механических свойств сталей разных структурных классов после различных режимов термического и силового воздействия.

4. Установление особенностей формирования структуры и свойств алюминийсодержащих коррозионностойких сталей при лазерном воздействии в поверхностном слое.

5. Разработка технологических режимов получения коррозионностойкой высокопрочной проволоки тончайших сечений промышленных и полупромышленных партий.

Научная новизна работы.

1. В работе впервые в результате комплексных экспериментальных исследований, включающих методы электронно-микроскопического, рентгенофазового и рентгеноструктурного исследований, сформулированы основные закономерности формирования физико-механических и функциональных свойств новых практически безуглеродистых коррозионностойких алюминийсодержащих сталей различных структурных классов в зависимости от легирования, степени деформационной нестабильности аустенита и режимов последующих деформационно-термических обработок.

2. Установлено, что во всех алюминийсодержащих сталях образование аустенита происходит непосредственно из -феррита, т.е. -феррит является первичной фазой, аустенит вторичной.

3. Показано, что аустенит во всех алюминийсодержащих сталях является метастабильным и при больших степенях деформации может практически полностью превращаться в мартенсит деформации.

4. Показано, что после высоких суммарных степеней обжатия в исследуемой метастабильной алюминийсодержащей аустенитной стали формируется нанокристаллическая структура, обеспечивающая получение высокопрочного состояния.

5. Показано, что в аустенитной и аустенитно-ферритных сталях для формирования высокопрочного состояния реализуются практически все возможные механизмы упрочнения (твердорастворное упрочнение матрицы ГЦК или смешанной, механизм деформационного упрочнения за счет полиморфных или превращений, протекающих по бездиффузионному механизму, механизм деформационного упрочнения гетерофазной структуры за счет «наследования» дефектов аустенита высокодисперсными кристаллами мартенсита и распад пересыщенного твердого раствора).

6. Впервые обнаружена аномально высокая твердость -феррита в аустенитных, аустенитно-ферритных и ферритных алюминийсодержащих сталях, которая обусловлена выделением в -феррите интерметаллидной фазы типа NiAl.

7. Изучено структурообразование при лазерной обработке с оплавлением аустенитной и аустенитно-ферритной сталей и показано, что в зоне термического влияния на поверхности образуется однофазный слой -феррита с дальнейшим переходом в смешанную аустенитно-ферритную или аустенитную структуру.

Достоверность результатов и сделанных выводов обеспечиваются:

• использованием комплекса современных методов исследования структуры (металлографии с компьютерным анализом изображения, электронной микроскопии, рентгенографии при комнатной и повышенных температурах, микрорентгеноспектрального анализа);

• согласованностью результатов лабораторного и промышленных экспериментов;

• большим объемом экспериментальных данных с их статистико-вероятностной обработкой и воспроизводимостью результатов экспериментов;

• успешной реализацией разработанных методов в технологии получения высокопрочных материалов.

Практическая значимость работы.

Получены патенты на исследуемые стали: аустенитная (патент РФ № 2252977 с приоритетом от 27.05.2005), аустенитно-ферритная (патент РФ № 2116373 с приоритетом от 17.07.1998), ферритная (патент РФ № 2323998 с приоритетом от 06.09.2006);

Разработаны технологии получения высокопрочной проволоки всех типоразмеров, в том числе и тончайшей, сталей различных структурных классов. Данные разработки позволяют существенно сократить число технологических переделов, повысить служебные характеристики упругих элементов, работающих в широком интервале температур, и качество стержневого медицинского инструмента для микрохирургии. Полученный из исследуемых сталей мединструмент позволит избавиться от импортных поставок и перейти на более дешевый отечественный продукт, имеющий не только меньшую стоимость, но и более высокие технологические и функциональные свойства.

Изготовлена проволока и различный медицинский стержневой инструмент, проведены промышленные и клинические испытания, которые показали высокий уровень физико-механических свойств и коррозионной стойкости медицинского инструмента из сталей 03Х13Н8М2Т, 03Х14Н11К5М2ЮТ, 03Х14Н10К5М2Ю2Т по сравнению с мединструментом из сталей 40Х13, 12Х18Н10Т.

Экспериментальное исследование и промышленное освоение этих сталей для производства медицинского инструмента было выполнено Уральским государственным техническим университетом – УПИ и Казанским НПО «Мединструмент» совместно с Белорецким металлургическим комбинатом. При участии автора внедрена в производство хирургических игл (НПО «Мединструмент», ПТО «Медтехника» г. Казань) мартенситностареющая сталь ЗИ 90-ВИ (авторское свидетельство № 850726, БИ № 28, 1982 г.). В настоящее время мартенситностареющая сталь ЗИ90-ВИ успешно применяется на многочисленных предприятиях РФ для изготовления стержневого медицинского инструмента.

Прошла промышленное опробование экономнолегированная мартенситностареющая сталь 03Х13Н8М2Т, которая включена в ТУ на производство игольной проволоки.

В связи с тем, что функциональные свойства стержневого медицинского инструмента крайне разнообразны, необходимо для различных видов мединструмента применять стали различных структурных классов. Прошли успешные испытания аустенитные и аустенитно-ферритные стали для производства хирургических игл различного назначения.

Кроме указанных выше примеров, имеется положительный опыт использования данных сталей и для других изделий – экстрактора Пашковского, зубных боров, скоб для зубных протезов, каналорасширителей-напильников, ортодонтического стомотологического инструмента.

На защиту выносятся:

• Принципы легирования и составы принципиально новых сталей для мединструмента, сочетающих высокую прочность, коррозионную стойкость, упругость и теплостойкость.

• Выявленные закономерности изменения структуры на микро- и субмикроскопическом уровне сталей разных структурных классов после различных термических и деформационных обработок.

• Установленные закономерности формирования комплекса физико-механических свойств сталей разных структурных классов после различных режимов термического и силового воздействия.

• Особенности формирования структуры и свойств алюминийсодержащих коррозионностойких сталей при лазерном воздействии в поверхностном слое.





• Разработанные технологические режимы получения коррозионностойкой высокопрочной проволоки тончайших сечений промышленных и полупромышленных партий.

Работа выполнялась на кафедре металловедения ГОУ ВПО УГТУ-УПИ в рамках госбюджетной НИР № 2148 «Теоретические основы моделирования фазовых превращений, принципов легирования и упрочняющих технологий сталей и сплавов для машиностроения и медицины»; по ГРАНТУ РФФИ-Урал № 2194 «Фундаментальные основы решения проблемы получения нового поколения высокопрочных коррозионностойких сплавов для стержневого медицинского инструмента, в том числе с градиентным распределением фазового состава по сечению»; в рамках Федеральной Целевой Программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы» по теме госконтракта от 23 апреля 2007 г. №02.513.11.3197 «Разработка, получение и комплексное исследование высокопрочных конструкционных и функциональных металлических сплавов с нанофазным или наноструктурным упрочненим». Автор являлся ответственным исполнителем большинства тем.

Апробация диссертационной работы. Основные результаты настоящей работы докладывались на международных научно-технических конференциях:

«Новые конструкционные стали и сплавы и методы их обработки для повышения надежности и долговечности изделий», Запорожье, 1995; «Прочность и пластичность материалов в условиях внешних воздействий», Новокузнецк, 1995; «Взаимодействие дефектов и неупругие явления в твердых телах», Тула, 1997, 2001; «Новые материалы и технологии в машиностроении», Тюмень, 2000; «Новые материалы, неразрушающий контроль и наукоемкие технологии в машиностроении», Тюмень, 2005; «Нанотехнологии и физика функциональных нанокристаллических материалов», Екатеринбург, 2005; «Прочность и разрушение материалов и конструкций», Москва, 2005; «Туполевские чтения», Казань, 2006; «Фазовые превращения и прочность кристаллов», Черноголовка, 2006.

На собраниях металловедов России: 2-ом собрании, Пенза, 1994; 3-ем собрании, Рязань, 1996; 4-ом собрании, Пенза, 1998.

На Всесоюзных научно-технических конференциях: 4 Всесоюзная научно-техническая конференция, Москва, 1975; «Термическая и термомеханическая обработка стали – важнейший резерв экономии металлов», Днепропетровск, 1981.

На Всероссийских научно-технических конференциях:

«Демпфирующие материалы» Киров, 1974, 1979, 1999; «Структура и свойства аустенитных сталей», Екатеринбург, 2001.

На Евразийских научно-технических конференциях: Москва, ПРОСТ, 2004, 2006.

На VII…Х; ХIV…ХIХ Уральских школах металловедов-термистов.

Публикации. По материалам диссертации опубликовано 42 печатные работы, получено авторское свидетельство и 4 патента на изобретение.

Личный вклад диссертанта состоит в постановке задач исследования, научно обоснованном выборе, выплавке и отработке составов, исследовательских методик и путей решения, в получении результатов, изложенных в диссертации, интерпретации и обсуждении полученных экспериментальных данных, формировании основных положений и выводов. Все лабораторные и промышленные исследования, а также их трактовка выполнены при непосредственном участии автора. Организация промышленного внедрения в технологию изготовления игольной проволоки для мединструмента проводилась в равной степени с соавторами.

Структура и объем диссертации. Работа состоит из введения, 7 глав, выводов по каждой главе и заключения по диссертации. Диссертация изложена на 270 страницах машинописного текста, включающего 15 таблиц и 140 рисунков. В списке литературы приведено 232 наименований работ отечественных и зарубежных авторов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении дана краткая характеристика области исследования, обоснована актуальность темы, цель и задачи исследования, научная новизна и практическая значимость работы. Кратко рассмотрено состояние проблемы, связанной с технологическими особенностями работы сталей и сплавов для мединструмента, и возможные пути ее решения разработкой новых марок стали для мединструмента с использованием новейших достижений отечественного и зарубежного металловедения. Проведен анализ литературных данных о различных механизмах упрочнения в сталях разных структурных классов, с помощью которых можно управлять их структурным состоянием, а следовательно, свойствами этих сталей с целью достижения высокопрочного состояния. Рассмотрены следующие механизмы: твердорастворного упрочнения матрицы; деформационного упрочнения без фазовых превращений; деформационного упрочнения в метастабильных аустенитных сталях за счет полиморфных или превращений, протекающих по бездиффузионному механизму; деформационного упрочнения гетерофазной структуры за счет «наследования» дефектов аустенита высокодисперсными кристаллами мартенсита ( или , либо обеих одновременно); упрочнения за счет последеформационного старения в одной из матричных фаз (ОЦК или ГЦК).

Каждый механизм вносит тот или иной вклад в формирование высокопрочного состояния. В сталях различного класса ведущая роль в упрочнении отводится разным механизмам упрочнения. Несмотря на огромный объем экспериментальных работ, выбор нужного структурного класса коррозионностойкой стали представляется затруднительным. Поиск научно обоснованных решений выбора рациональных составов легированных сталей, в которых удалось бы максимально сочетать все возможные вышеперечисленные механизмы упрочнения с целью достижения высокопрочного состояния сталей и требуемого комплекса свойств, представлялся своевременным и необходимым.

В первой главе рассматриваются химические составы исследуемых сталей, являющихся объектами исследования – мартенситностареющих, аустенитных, аустенитно-ферритных и ферритных сталей (см. табл. 1).

Структуру, фазовый состав и свойства стали изучали с помощью различных методов. Механические испытания проводили как на проволочных, так и на стандартных образцах в соответствии с требованиями ГОСТ 1579-93, ГОСТ 11701-84, ГОСТ 1497-84, ГОСТ 14963-78, ГОСТ 10446-80, ГОСТ 3565-80. Твердость измеряли с помощью приборов Роквелла и Виккерса (ГОСТ 2999-75, ГОСТ 9013-59). Микротвердость измеряли на автоматическом твердомере серии PC фирмы «Leco» с программируемым шагом и нагрузкой 0,001 кг, а также на твердомере ПМТ-3. Металлографические исследования осуществляли на оптическом микроскопе Neophot, электронно-микроскопические исследования на микроскопах ЭМВ-100Л и JЕM 200-CX.

Таблица 1

Химический состав исследуемых сталей, мас. %



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.