авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 |

Развитие научных основ, создание и реализация эффективных технологий прокатки низколегированных стальных полос и листов с повышенными потребительскими свойствам

-- [ Страница 1 ] --

На правах рукописи

Денисов Сергей Владимирович

РАЗВИТИЕ НАУЧНЫХ ОСНОВ, СОЗДАНИЕ И

РЕАЛИЗАЦИЯ ЭФФЕКТИВНЫХ ТЕХНОЛОГИЙ ПРОКАТКИ

НИЗКОЛЕГИРОВАННЫХ СТАЛЬНЫХ ПОЛОС И ЛИСТОВ С

ПОВЫШЕННЫМИ ПОТРЕБИТЕЛЬСКИМИ СВОЙСТВАМИ

Специальность 05.16.05 - Обработка металлов давлением

АВТОРЕФЕРАТдиссертации на соискание ученой степени

доктора технических наук

Магнитогорск - 2009

Работа выполнена в ГОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова».

Научный консультант Заслуженный деятель науки и

техники РФ

доктор технических наук, профессор

Салганик Виктор Матвеевич.

Официальные оппоненты: доктор технических наук, профессор

Мухин Юрий Александрович;

доктор технических наук, профессор

Выдрин Александр Владимирович;

доктор технических наук, профессор

Гун Игорь Геннадьевич.

Ведущая организация ГОУ ВПО «Южно-Уральский

государственный университет»

(г. Челябинск).

Защита состоится «16» июня 2009 г. в 15-00 ч. на заседании диссертационного совета Д 212.111.01 при ГОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова» по адресу: 455000, г. Магнитогорск, пр. Ленина, 38, МГТУ, малый актовый зал.

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова».

Автореферат разослан «___» марта 2009 г.

Ученый секретарь

диссертационного совета В.Н. Селиванов

Общая характеристика работы

Актуальность работы.

Среди приоритетных направлений развития экономики России в ХХI веке важное место отводится ускоренному освоению уникальных месторождений нефти и газа, а также развитие наукоемких отраслей промышленности, таких как автомобилестроение.

Интенсивное развитие промышленного производства в нашей стране и за рубежом, особенно в таких развивающихся странах, как Китай, Индия, Бразилия и др. требует большого количества энергоносителей, прежде всего природного газа и нефти. В Российской Федерации большие запасы этих энергоносителей значительно удалены от потребителей, так как находятся в труднодоступных районах Севера, Западной Сибири и арктическом шельфе. Ясно, что в связи с этим потребность в трубах как основном средстве транспортировки газа и нефти велика и в ближайшие годы будет только возрастать.

Соответственно будет растущей и потребность в трубных заготовках, получаемых из низколегированных сталей путем их контролируемой горячей прокатки на широкополосных и толстолистовых станах. Такой прокат относится к высокотехнологичным видам продукции, к которой потребители предъявляют высокие требования по достижению сложного комплекса свойств. Этот комплекс включает регламентируемые показатели пластичности и прочности, ударной вязкости и хладостойкости, свариваемости и др. Задавая указанный комплекс свойств и постоянно повышая их регламентируемые уровни, потребители стремятся получить значительную надежность трубопроводов при экономии металла и снижение стоимости строительства. В частности, последнего достигают путем повышения давления в трубах (в газовых – до 100 – 200 атм вместо традиционных 75 атм, в нефтяных до 75 – 100 вместо 55), снижения толщины стенки и другими методами. Соответственно повышаются требования к трубам по прочности до 565 Н/мм2 (К65), ударной вязкости (до 250 Дж/см2 при -20 0С) и др.



В последнее время потребители вынуждены были дополнить и без того широкий комплекс нормируемых показателей для трубных заготовок новыми, которые характеризуют коррозионную стойкость. Такая необходимость возникает и при транспортировании нефти из труднодоступных районов, где для пластовых вод характерно наличие агрессивных компонентов, и при использовании подводных морских трубопроводов (например, газопровод по дну Балтийского моря или через Черное море в Турцию и Болгарию). Для повышения срока службы трубопроводов в условиях коррозионных воздействий идут даже на такую затратную меру, как увеличение толщины стенки (40 мм и более).

Необходимость решения антикоррозионной проблемы требует создания сложных композиций химического состава стали и специальных режимов ее контролируемой прокатки с ускоренным охлаждением. При этом следует получить вместо традиционной для трубных сталей феррито-перлитной структуры со средним размером ферритного зерна ~ 5 мкм более мелкую феррито-бейнитную со средним размером бейнитного зерна ~ 1 мкм.

Современное совершенствование производства листовой стали для автомобилестроения определяет такие важные тенденции в развитии этой отрасли, как снижение массы кузова автомобиля, повышение его безопасности и комфортабельности, сохранение приемлемого уровня цен.

Реализация указанных тенденций возможна путем решения задачи производства высокопрочного листового проката с категорией прочности, определяемой величиной предела текучести для проката толщиной 1,5 - 16,0 мм.

В связи с этим целью настоящей работы являлось получение проката различного назначения с требуемым комплексом потребительских свойств из низколегированных сталей новых марок.

Для реализации сформулированной цели в работе поставлены и решены следующие задачи:

  • разработка комплексной методологии проектирования новых технологий с помощью специализированной исследовательской системы (СИС);
  • моделирование напряженно-деформированного состояния металла при горячей прокатке, в том числе, с учетом наличия и поведения поверхностных трещин;
  • экспериментальные пластометрические исследования сопротивления деформации низколегированных марок стали с изучением процессов рекристаллизации и разупрочнения;
  • разработка нейросетевой модели и изучение формируемых механических свойств проката в зависимости от температурно-деформационных режимов прокатки на широкополосных станах;
  • применение комплексной методологии для создания пакета новых технологий получения низколегированного высокопрочного проката;
  • опробование и внедрение разработанных технологий в практику работы широкополосных станов горячей прокатки.

Научная новизна полученных результатов состоит в следующем:

1. Создана комплексная методология разработки технологий контролируемой прокатки низколегированных сталей новых марок с достижением уникального сочетания потребительских свойств, отличающаяся тем, что реализуется применением специализированной исследовательской системы (СИС).

2. Создана нейросетевая модель формирования механических свойств проката, отличающаяся тем, что процесс ее обучения выполнен на новых числовых массивах, описывающих температурно-деформационные режимы контролируемой прокатки современных низколегированных сталей на широкополосных станах.

3. Разработана математическая модель напряженно-деформированного состояния металла при горячей прокатке, отличающаяся учетом наличия поверхностных трещин и описанием их поведения при формоизменении.

4. Установлены новые зависимости сопротивления деформации низколегированных сталей (05Г1Б, Х70, 10Г2ФБ, Х65) от основных условий контролируемой прокатки – марки стали, температуры металла, степени и скорости деформации, протекания процессов разупрочнения, длительности междеформационной паузы.

5. Определены рациональные параметры деформирования полос в черновой стадии прокатки, отличающиеся учетом длительности междеформационной паузы.

6. Установлены закономерности формирования в металле при его охлаждении после контролируемой прокатки структуры хладостойких и высокопрочных сталей, содержащих в качестве основных легирующих элементов углерод в количестве 0,04-0,07% и марганец 1,3-1,6%, а также дополнительные легирующие элементы Ti, V, Nb, Mo и др.

Практическая значимость работы состоит в следующем.

1. Создана возможность отыскания с применением указанной выше СИС для конкретных условий прокатки и заданной продукции основных технологических параметров (режимов) процесса:

- композиции химического состава стали;

- температурно-деформационных параметров;

- скоростных режимов;

- энергосиловых параметров.

2. Использование разработанной СИС позволило усовершенствовать процесс контролируемой прокатки с ускоренным охлаждением, что отражено в ТИ 101-Я-508-2009 «Производство газонефтепроводных труб», ТИ 101-П-ГЛ10-374-2004 «Горячая прокатка полос на стане «2000» горячей прокатки», ТИ 101- П - ГЛ4 - 71 - 2008 «Горячая прокатка полос на стане «2500» горячей прокатки» и ВТИ 101- П – ГЛ9 - 2 – 2009 «Горячая прокатка листов на стане «5000»».

3. Освоено производство разнообразного рулонного проката новых размеров из низколегированных сталей новых марок для изготовления труб и автомобилестроения. В частности, впервые в РФ разработаны и освоены технологии получения на ШСГП полос из низколегированных сталей толщиной 16,1-20 мм.

4. В результате ОАО «ММК» повысило конкурентоспособность выпускаемой продукции на рынке высокопрочных сталей и вышел на мировые рынки высокотехнологичной наукоемкой продукции. Химический состав новых сталей и технологии их производства защищены 8 патентами РФ.

Всего в рамках представленной работы освоено более 30 новых видов проката в ОАО «ММК». Прокатано на широкополосных станах 2000 и 2500 более 200 тысяч тонн такого металла, в том числе стали новых марок: 05Г1Б, Х70, Х65, S420MC и др. Экономический эффект от внедрения результатов работы в промышленности составил более 160 млн. рублей в год. Доля данной работы в достигнутом эффекте – 30%.

Апробация работы. Представленная диссертационная работа выполнялась более 7 лет. Соответственно ее основные положения и результаты доложены и обсуждены на многочисленных научно-технических конференциях, конгрессах и семинарах различного уровня. Наиболее значимые из них следующие: конгрессы прокатчиков в 2002, 2005, 2007 гг. в г. Магнитогорск, Липецк, Москва, международные конференции – «Трубы 2005, 2006, 2007 и 2008гг.» в г. Челябинске, школы-семинары «Фазовые и структурные превращения в сталях» в 2004, 2006, 2008гг. в г. Магнитогорске, ежегодные научно-технические конференции № 64-66 в г. Магнитогорске, I международная научно-практическая конференция «ИНТЕХМЕТ-2008» в 2008г. в г. Санкт-Петербург, международные конференции «Современные тенденции разработки и производства сталей и труб для магистральных газонефтепроводов», «Современные требования и металлургические аспекты повышения коррозионной стойкости и других служебных свойств углеродистых и низколегированных сталей» в 2008г. в г. Москва и др.

Публикации. Основное содержание диссертации опубликовано в 34 печатных работах, среди которых монография, 25 статей (из них 12 в рецензируемых изданиях по перечню ВАК), 8 патентов на новые стали и способы их производства.

Структура и объем работы. Диссертация состоит из введения, шести глав, заключения, списка литературы, включающего 322 наименования и 12 приложений. Работа изложена на 352 страницах машинописного текста, содержит 49 рисунков и 59 таблиц.

Основное содержание работы

В первой главе был проведен литературный обзор существующих способов производства низколегированного проката для получения труб большого диаметра и автомобилестроения, применяемых в металлургической промышленности. При изучении работ Гуляева А.П., Гладштейна Л.И., Пикеринга Ф.Б., Полухина П.И., Клименко В.М., Бровмана М.Я., Полухина В.П., Фонштейн Н.М., Литвиненко Д.А., Зикеева В.Н., Голованенко С.А., Матросова Ю.И., Погоржельского В.И., Перельмана Л.Д., Хайстеркампа Ф., Хулки К., Mohrbacher H., De Ardo A.J., Морозова Ю.Д., Эфрона Л.И., Шабалова И.П., Коцаря С.Л., Белянского А.Д., Мухина Ю.А., Шафигина З.К., Гуркалова П. И. и др., посвященных данной тематике, а также опыта ведущих металлургических заводов России, СНГ и других стран мира отмечено, что среди многообразия способ производства низколегированного проката, используемого для производства труб большого диаметра и автомобилестроения, наиболее перспективным является контролируемая прокатка с последующим ускоренным охлаждением.





Развитие металлургической промышленности в России и за рубежом в последнее время в большой степени определяется потребностями двух самых металлоемких отраслей – автомобилестроение и нефтегазовый комплекс.

В настоящее время протяженность магистральных газопроводов России составляет приблизительно 150 тыс. км, а их металлоемкость примерно 50 млн. т труб.

По оценкам ОАО «Газпром», потребность в трубах большого диаметра в ближайшие годы может достигнуть 4,0 млн.т в год для строительства новых газопроводов и до 400 тыс. т для ремонта существующих.

Для закупки такого количества труб на Западе или на Украине Российской Федерации ежегодно понадобится по самым скромным подсчетам до 8 млрд. дол. США. Эти денежные средства необходимо оставить в Российской Федерации. Для этого требуется разработать технологию производства штрипса из низколегированных марок стали на существующих в Российской Федерации станах требуемой толщины и ширины.

Надежность трубы – это прежде всего реализация высоких требований к качеству металла, потребительские свойства которого определяются его химическим составом и технологией производства. За последние 40 лет требования к материалу полос из которых изготавливаются трубы существенно возросли, что вынуждает технологов радикально совершенствовать химический состав стали и технологические процессы для получения новых видов продукции. Среди многообразия способов производства штрипсов, используемых для производства труб большого диаметра, наиболее перспективным является контролируемая прокатка с последующим ускоренным охлаждением (КП+УО).

Для производства современных автомобилей используется прокат различных категорий прочности. Применение высокопрочных марок стали дает возможность сбалансировать противоречия между необходимостью снижения веса автомобиля и повышения его безопасности.

После многолетнего эволюционного пути наиболее востребованными являются высокопрочные низколегированные стали (HSLA), отличающиеся пониженным содержанием углерода, добавками элементов, повышающих устойчивость аустенита для формирования феррито-бейнитной микроструктуры (Mo, Cr, Ni, Cu) и комплексным микролегированием Ti+Nb+V. Для обеспечения мелкого зерна используется технология КП+УО, характеризующаяся значительными обжатиями (деформациями).

Для разработки технологий контролируемой прокатки полос и листов из новых марок стали возможно использование известных подходов и методик. Анализируя представленную в литературе информацию, можно отметить, что для этих целей компании и исследовательские центры применяют различные методы. Их можно укрупнено классифицировать по 2 видам.

Первый вид разработки новых технологий можно отнести к чисто эмпирическим. Он опирается на сведения, полученные путем анализа литературных данных, и собственный опыт производства аналогичной продукции.

Второй вид предусматривает использование расчетного анализа на основе моделирования некоторых аспектов разрабатываемого процесса. При этом широко используют как статистические подходы с получением регрессионных моделей, так и феномологические с использованием аналитических моделей. Первый тип моделей, как правило, применяют для описания связей «технологические параметры процесса – механические свойства продукции», второй вид - для оценки энергосиловых параметров, причем на уровне инженерных методик.

Вторая глава посвящена разработке специальной исследовательской системы (СИС), включающей пять блоков.

При использовании станов горячей прокатки важное значение имеет наличие достоверного количественного описания явлений, характеризующих технологические процессы. Однако получение такой информации сопряжено со значительными трудностями. Эти трудности вызваны наличием многофакторной связи между параметрами формоизменения, энергосиловыми и другими параметрами, а также одновременным протеканием наряду с пластическим деформированием таких сложных процессов, как формирование микроструктуры – рост зерна, рекристаллизация, выделение карбонитридов, фазовые превращения и физико-механических свойств металла, трансформация дефектов слябов в дефекты на поверхности проката и др. Указанные факторы и процессы, оказывая взаимное влияние друг на друга, требуют системного подхода к их расчетному описанию и исследованию.

В то же время в практике создания эффективных технологий уже отработан ряд приемов, методик и моделей, которые позволяют обосновано оценить и достоверно прогнозировать различные аспекты создания технологического процесса. В связи с этим, по нашему мнению, актуальна и правомочна постановка важной задачи построения специальной исследовательской системы (СИС), позволяющей анализировать действующие технологические процессы и синтезировать новые.

Указанная система может включать следующие блоки:

- во-первых, блок в виде вязко-пластической конечно-элементной модели для слабосжимаемой среды, позволяющий детально описывать напряженно-деформированное состояние металла в очаге деформации при прокатке;

- во-вторых, блоки, реализующие известные методики расчета параметров прокатки – деформационных, температурно-скоростных, энергосиловых и др;

- в-третьих, статистические модели, создаваемые на базах фактических данных о влиянии химического состава стали, характеристик оборудования, технологических параметров при нагреве, прокатке и охлаждении полос на достижение требуемого комплекса механических свойств; среди таких моделей особенно перспективными являются построенные на основе использования искусственных нейронных сетей.

Перечисленные модели фактически являются продуктом использования научного базиса совершенствования действующих и проектирования новых технологий. Однако реальное состояние этого базиса и возможностей моделирования таковы, что не позволяют полностью формализовать (алгоритмизировать) творческий процесс создания технологий. В укрупненной структуре соответствующей исследовательской системы содержится ряд «белых пятен» - неформализованных блоков, не имеющих строгого математического описания. Это выбор композиции химического состава стали, этапов контролируемой прокатки, частных обжатий по клетям, диапазона начала прокатки в области нерекристализованного зерна, схемы охлаждения проката и т.д.

Ответы на вопросы, которые ставят неформализованные блоки, могут быть получены на основе предшествующего опыта и аналогий с элементами интуиции, экспертных методов, результатов экспериментов и других приемов не строгих оценок. Ясно, что такого рода оценки не могут быть однозначными. Это предопределяет многовариантность создаваемых технологий в целом.

Несмотря на отмеченные трудности, формирование и использование исследовательской системы сопряжено со следующими достоинствами:

полное и адекватное использование научного базиса для моделирования процессов;

явное представление неформализуемых блоков, их задач и разработка эффективных приемов нестрогих оценок;



Pages:   || 2 | 3 | 4 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.