авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Ирек абдуллович гидродинамические и тепловые процессы в пульсирующих турбулентных потоках

-- [ Страница 1 ] --

На правах рукописи

УДК 532.5 : 536.2

ДАВЛЕТШИН Ирек Абдуллович

ГИДРОДИНАМИЧЕСКИЕ И ТЕПЛОВЫЕ ПРОЦЕССЫ

В ПУЛЬСИРУЮЩИХ ТУРБУЛЕНТНЫХ ПОТОКАХ

Специальности:

01.02.05 механика жидкости, газа и плазмы

01.04.14 теплофизика и теоретическая теплотехника

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Казань, 2009

Работа выполнена в Исследовательском центре проблем энергетики КазНЦ РАН и Казанском государственном техническом университете им. А.Н.Туполева.

Научный консультант – докт. техн. наук

Михеев Николай Иванович

Официальные оппоненты –

докт. техн. наук, проф. Фафурин Андрей Викторович

докт. техн. наук, проф. Исаев Сергей Александрович

докт. техн. наук Краев Вячеслав Михайлович

Ведущая организация – Институт теплофизики

им. С.С. Кутателадзе СО РАН

Защита состоится «_22 » апреля 2009 г. в 10 часов на заседании диссертационного совета Д.212.079.02 в Казанском государственном техническом университете им. А.Н. Туполева по адресу: 420111, г. Казань, ул. К.Маркса, 10.

С диссертацией можно ознакомиться в библиотеке Казанского государственного технического университета им. А.Н. Туполева.

Автореферат разослан «_____»____________2009г.

Ученый секретарь

диссертационного совета

канд. техн. наук, доц. А.Г. Каримова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Нестационарные процессы являются неотъемлемой частью работы различных технических устройств при запуске и останове, на переходных режимах. Часто в трактах установок возникают пульсирующие потоки. Источниками пульсаций может являться как периодическое изменение конфигурации элементов тракта, например, при работе лопаточных и поршневых машин, механизмов систем управления и регулирования, так и турбулентность потока. Важную роль в возбуждении колебаний потока играют акустические характеристики тракта, которые способствуют усилению определенных гармоник колебаний от источников пульсаций. В ряде случаев нестационарные режимы создаются преднамеренно, например, с целью интенсификации теплоотдачи при охлаждении лопаток турбины двигателя, в других – возникает необходимость борьбы с пульсациями для недопущения резонансных режимов и подавления шума.

Пульсирующие течения весьма многообразны. Это многообразие связано с большим набором чисел подобия, определяющих режим пульсирующего течения. Если для стационарного потока обычно используются числа Маха и Рейнольдса, для пульсирующих течений к ним добавляются еще как минимум два числа подобия, характеризующие относительную частоту и относительную амплитуду пульсаций. Необходимо также учитывать условия возникновения резонансных явлений в тракте.

На сегодняшний день нет методов надежного прогнозирования параметров турбулентных пульсирующих течений. Экспериментальные данные и результаты теоретических исследований относятся к ряду конкретных задач и не позволяют получить широкие обобщения в этой области. Из численных методов исследования наиболее перспективным представляется метод прямого численного моделирования нестационарных уравнений Навье-Стокса. Однако этот метод требует больших мощностей ЭВМ и на данное время получены лишь единичные результаты в этом направлении.



Получение информации о пространственно-временной структуре пульсирующих течений экспериментальными методами требует больших массивов данных. Современные средства измерений в этом плане имеют существенные ограничения. К примеру, термоанемометры имеют хорошие динамические характеристики, но для получения пространственной картины течения требуется большое их количество. Оптические методы измерений (например, PIV) могут давать мгновенную картину течения в интересующей области, но не отражают динамику процессов. В связи с этим исследование таких сложных течений, очевидно, требует комплексного подхода с применением теоретических и экспериментальных методов.

Задача становится еще более сложной, если пульсации потока сопровождаются отрывными явлениями. Информации по таким течениям крайне мало.

Таким образом, проблема разработки экспериментальных и расчетных методов исследования пульсирующих турбулентных течений, в том числе отрывных, получение и систематизация информации о пространственно-временной структуре, выявление механизмов взаимосвязи тепловых и гидродинамических процессов и закономерностей турбулентного переноса в таких потоках являются в настоящее время весьма актуальными.

Цель работы  – развитие методов прогнозирования гидродинамических и тепловых процессов в пульсирующих турбулентных течениях.

Для достижения поставленной цели решались следующие задачи:

- разработка методов моделирования и оценки параметров в пульсирующих потоках;

- разработка методов экспериментального изучения тепловых и гидродинамических процессов в пульсирующем потоке;

- получение и обобщение экспериментальных данных по гидродинамическим и тепловым параметрам в турбулентных пульсирующих, в том числе отрывных, течениях;

- анализ физических механизмов влияния нестационарности потока на процессы переноса импульса и теплоты в пульсирующих течениях.

Научная новизна:

1. Созданы новые методы экспериментального изучения и прогнозирования гидродинамических и тепловых процессов в пульсирующих турбулентных течениях:

- численного моделирования нестационарных потоков в каналах переменного сечения при сложных граничных условиях;

- определения осредненной по времени теплоотдачи в условиях неравномерного распределения теплового потока вдоль канала на основе решения обратной задачи теплопроводности;

- оценки модуля вектора поверхностного трения в отрывной области по измерениям одной компоненты;

- визуализации пульсирующих течений.

2. Получены и обобщены экспериментальные данные по осредненным и турбулентным характеристикам гидродинамических и тепловых параметров в гладких каналах в пульсирующем потоке. Впервые установлена связь параметров пульсирующего потока не только с локальными значениями факторов нестационарности, но и с волновой структурой пульсирующего течения в канале. Предложена физическая модель, объясняющая обнаруженные в экспериментах эффекты немонотонного и аномального распределения параметров пульсирующего потока в канале. Сопоставлением результатов широкомасштабных экспериментальных и расчетных исследований подтверждена адекватность предлагаемого метода моделирования пульсирующих течений в канале, в том числе обнаруженных явлений. Выявлены области (по частоте) преимущественного влияния на параметры пульсирующего потока акустических колебаний и турбулентности.

3. Установлены механизмы и закономерности гидродинамических и тепловых процессов в пульсирующих турбулентных отрывных течениях. Показано, что механизмом обнаруженной в экспериментах высокой чувствительности отрыва потока и размеров отрывной области к пульсациям потока является взаимодействие турбулентности с наложенной нестационарностью с образованием в следе за препятствием регулярных крупномасштабных вихрей. Выявлена многократная интенсификация теплообмена в ближнем следе за препятствием по сравнению со стационарным режимом, механизмом которой является взаимодействие со стенкой регулярных крупномасштабных вихрей. На основе обобщения экспериментальных данных в широком диапазоне факторов нестационарности потока предложено критериальное соотношение для коэффициента теплоотдачи в отрывной области пульсирующего потока.

Получены расходные характеристики сужающих устройств в широком диапазоне относительных частот наложенных пульсаций.

Практическая ценность. Экспериментальная информация о пространственно-временной структуре течения, в том числе отрывного, и теплообмена при наложенных пульсациях скорости может быть использована для верификации различных методов моделирования турбулентных течений. Метод численного моделирования нестационарных потоков может быть использован в инженерной практике при проектировании и безопасной эксплуатации трубопроводов. Метод определения осредненного по времени коэффициента теплоотдачи может найти применение в измерениях теплоотдачи в сложных течениях. Результаты исследований по расходным характеристикам сужающих устройств в пульсирующем потоке могут быть использованы в расходометрии. Результаты обобщения характеристик поверхностного трения и теплового потока в стенку в пульсирующих турбулентных, в том числе отрывных, течениях могут быть использованы в инженерной практике при расчете теплообменных устройств.

Основные результаты работы вошли в отчеты по грантам Президента РФ (НШ-746.2003.8; НШ-8574.2006.8; НШ-4334.2008.8), РФФИ (02-02-16719; 03-02-16867; 03-02-96256-р; 05-02-16263; 06-08-00521; 07-08-00330; 08-08-12181-офи), по контракту с ФАНИ (№02.516.11.6025), аналитической ведомственной целевой программы Минобрнауки “Развитие научного потенциала высшей школы (2006-2008 годы)”, ФЦП «Интеграция».

На защиту выносятся:

- Метод моделирования пульсирующего потока в канале переменного сечения, основанный на решении одномерных нестационарных уравнений газовой динамики и интегральных соотношений в зоне внезапного изменения сечения.

- Результаты исследования пространственно-временной структуры пульсирующих течений: волновая структура течений, экспериментальные данные о динамике мгновенных пространственных полей скорости потока, ее турбулентных пульсаций, давления, поверхностного трения.

- Результаты экспериментального исследования гидродинамических характеристик пульсирующего турбулентного отрывного течения: влияние наложенных пульсаций на распределения скорости, давления, поверхностного трения и их турбулентных пульсаций, а также на длину отрывной области; результаты визуализации кинематической структуры.

- Результаты экспериментального исследования и обобщения тепловых характеристик пульсирующего турбулентного отрывного течения: влияние наложенных пульсаций на распределение осредненного коэффициента теплоотдачи, на мгновенные значения теплового потока на стенке, на характеристики взаимосвязи гидродинамических и тепловых процессов.

Апробация работы. Основные результаты диссертационной работы докладывались и обсуждались на научно-технических конференциях КазНЦ РАН (2000 – 2008), Всероссийских школах-семинарах молодых ученых и специалистов под руководством акад. РАН В.Е.Алемасова (2000, 2004, 2006, 2008), Школах-семинарах молодых ученых и специалистов под рук. акад. РАН А.И. Леонтьева (2001, 2007), IV и VI Минских Международных форумах по тепломассообмену (Минск, 2000, 2008), Российских национальных симпозиумах по энергетике (Казань, 2001, 2006), III и IV Российских национальных конференциях по теплообмену (Москва, 2002, 2006), XXVI и XXVII Сибирских теплофизических семинарах (Новосибирск, 2002, 2004), Всероссийских межвузовских научно-технических конференциях (Казань, 2002, 2005), Международных школах-семинарах «Модели и методы аэродинамики» (Евпатория, 2005, 2006, 2007, 2008), IV Международном симпозиуме по турбулентности и тепло-массопереносу (Анталия, 2003), Международных конференциях по методам аэрофизических исследований ICMAR (Новосибирск, 2007, 2008).

Публикации. Автор имеет 66 научных трудов. Основные результаты диссертации опубликованы в 60 работах.

Личный вклад автора заключается в следующем: идеи, разработки и результаты, вынесенные на защиту, полностью принадлежат автору, а именно: постановка общей цели и конкретных задач исследования, разработка методов исследования, выполнение основной части экспериментов, анализ и обобщение результатов исследований.

Структура и объем работы. Диссертация состоит из введения, пяти глав и заключения. Общий объем диссертации составляет 298 стр., в том числе 143 рисунка, 3 таблицы. Список литературы включает 311 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении приводится обоснование актуальности темы исследования, сформулированы цель, задачи работы и основные положения, которые выносятся на защиту, показан личный вклад соискателя в приведенные в диссертации результаты.





Структурное построение диссертации отражает порядок решения поставленных задач. После критического обзора литературы по теме (глава 1) изложены созданные автором новые методы исследования и прогнозирования характеристик пульсирующих потоков (глава 2). Глава 3 посвящена экспериментальному и расчетному исследованию волновой структуры пульсирующего турбулентного течения в гладком канале. С использованием полученной информации о локальных параметрах потока в главе 4 приведены результаты исследований кинематической картины пульсирующего отрывного течения при различных положениях отрывной области относительно волновой структуры. В главе 5 приведены экспериментальные данные и результаты обобщения теплообмена в турбулентном пульсирующем течении (как в гладком канале, так и в отрывном потоке). Исследованы взаимосвязи между гидродинамическими и тепловыми процессами в этих течениях.

Для удобства восприятия экспериментальные данные и результаты расчетов чаще всего представлены в размерной форме, а обобщения – в числах подобия. Расход рабочей среды привязан к эталонным критическим соплам, используемым в экспериментах.

В первой главе рассмотрены современные представления о структуре нестационарных, в том числе пульсирующих, течений. Проанализированы теоретические и экспериментальные подходы к проблеме описания гидродинамических и тепловых процессов в нестационарных течениях. Рассмотрена проблема получения экспериментальной информации в турбулентных нестационарных течениях.

Приведен критический обзор исследований потоков в условиях гидродинамической нестационарности по работам следующих авторов: И.С.Громека, Б.М. Галицейский, Е.В. Якуш, Э.К. Калинин, В.К. Кошкин, Г.А. Дрейцер, В.М. Краев, У.Р. Лийв, В.И. Букреев, В.М. Шахин, Е.П.Валуева, В.Н. Попов, Н.Н. Ковальногов, Ж. Кусто, А. Депозер, Р.Худевиль, R.M. Curtet, J.P. Girard, T. Mizushina, T. Maruyama, Y. Siozaki, B.R. Ramaprian, S.W. Tu, M.A. Habib, A.M. Attya, S.A.M. Said, R.C.Martinelli, L.M.K. Boelter, E.B. Weinberg, S. Yakahi и др. Отмечается, что экспериментально выявлены особенности профилей скорости, ее среднеквадратических пульсаций, рейнольдсовых напряжений, коэффициента турбулентной вязкости в потоках с ускорением и замедлением. Определено влияние нестационарности на гидравлическое сопротивление и теплоотдачу. Показано, что квазистационарные методы исследования имеют ограниченную область применения. Например, в пульсирующих течениях наблюдается несоответствие турбулентного напряжения и градиента продольной скорости, приводящее к отрицательному значению турбулентной вязкости, определяемой согласно гипотезе Буссинеска.

Существенно меньше информации по структуре течений в условиях тепловой нестационарности (В.К. Кошкин, Э.К. Калинин, Г.А. Дрейцер, В.М.Краев, Б.В. Перепелица, Д.М. Драйвер, Х.Л. Сигмиллер, Дж.Г.Марвин и др.). Многообразие форм и проявлений нестационарности не позволяет определить универсальные критерии этих процессов. Полученные зависимости имеют ограниченный характер и могут применяться лишь в узких диапазонах соответствующих параметров конкретных задач. Получение обобщающих зависимостей в нестационарных потоках требует детальных исследований тепловой и кинематической структуры течений (как экспериментальным путем, так и численным моделированием).

Проведен анализ различных работ по классификации турбулентных пульсирующих течений (М.М. Григорьев, В.В. Кузьмин, А.В. Фафурин, L.W.A.Carr, B.R. Ramaprian, S.W. Tu, T. Mizushina, T. Maruyama, H. Hirasawa и др.). Показано, что предлагаемые классификации строятся в основном на особенностях влияния наложенных пульсаций на кинематическую структуру течения. Однако в этих классификациях из рассмотрения выпадает существенная характеристика пульсирующих течений – волновая структура.

Приведен обзор работ по исследованию отрывных течений. В разные годы решением задач в этой области занимались А.И. Леонтьев, В.И. Ивин, Л.В. Грехов, П.Л. Комаров, А.Ф. Поляков, Г.И. Ефименко, Е.М.Хабахпашева, А.В. Довгаль, В.В. Козлов, Е.В. Власов, А.С. Гиневский, Р.К. Каравосов, В.И.Терехов, Н.И. Ярыгина, М.Г. Кталхерман, Р.Б.Шляжас, Е.П. Дыбан, Э.Я.Эпик, Р. Симпсон, Фогель, Д.К. Итон, Т.Ота, Кон, Дж.П. Джонстон, Исомото, Хонами, П. Чжен, S. Masuda, H. Oozumi, K. Yoshisumi, S. Kyuro, K.Masaru, P. Bradshaw, F.Y. Wong, W.J. Devenport, E.P. Sutton, Nishiyama, T.Kawamura, S. Tanaka, I. Mabuchi, M. Kumada, Y.Sugawara, M. Yamamori, J.Mimatsu и др. Определены основные характеристики отрывного течения; влияние на отрыв и присоединение потока различных факторов: степени турбулентности и толщины пограничного слоя набегающего потока, градиента давления. Показано, что даже при стационарном внешнем течении отрывная область имеет существенно нестационарную структуру. Получены распределения коэффициента теплоотдачи в отрывной области.

Крайне мало данных по отрывным течениям в условиях наложенной нестационарности (П. Чжен, S. Chin, H.J. Sung, G.R. Ludwig, S. Tavoularis, R.K. Singh, F.K. Moore, J.C.III. Williams, R.A. Despard, J.A. Miller и др.). Показаны теоретические подходы к решению некоторых задач в основном при ламинарном режиме течения. Анализ отрыва нестационарного потока показал, что здесь в первую очередь требуется выработка критериев отрыва и присоединения потока. Условие равенства нулю поверхностного трения на стенке, справедливое для точек отрыва и присоединения стационарного потока, в случае нестационарного течения не будет однозначной характеристикой отрывных явлений.

Рассмотрено современное состояние исследований турбулентных течений методами численного моделирования на основе работ И.А.Белова, С.А. Исаева, Е.П. Валуевой, В.Н. Попова, А.Ф. Курбацкого, K. Kodama, A.Scotti, U. Piomelli и др. Сложность применения численных методов к нестационарным пульсирующим течениям заключается в проблеме описания турбулентности потока: выбор адекватной модели в методах RANS или учет всех масштабов турбулентности в методах прямого численного моделирования (DNS). В случае изменения геометрии канала во времени возникает необходимость использования в расчетах динамических сеток.

Приведен обзор современных методов измерений по работам следующих авторов: В.Е. Алемасов, Г.А. Глебов, А.П. Козлов, Г.С.Берлин, Б.П. Устименко, В.Н. Змейков, А.А. Шишкин, Л.П. Ярин, А.Л. Генкин, В.И.Кукес, Б.С. Ринкевичюс, И.Л. Повх, С.В. Алексеенко, А.В. Бильский, Д.М. Маркович, Н.А. Фомин, В.И. Корнилов, Ю.А. Литвиненко, О.А.Геращенко, С.З. Сапожников, В.Ю. Митяков, А.В. Митяков, Льюис, Кабота, Р.В. Вестфал, Д. Коулз, А.Дж. Уодкок, R.J. Adrian, L.J.S. Bradbary, P.M. Downing, J. H. Preston, J.E. Mitchell, T.J. Hanratty и др. Показано, что экспериментальное изучение нестационарных турбулентных течений имеет свои особенности и предъявляет определенные требования к средствам измерений – по быстродействию, чувствительности к направлению потока.

На основании проведенного критического обзора правомерно утверждать, что в современной гидродинамике и теплофизике существует проблема описания пульсирующих турбулентных, в том числе отрывных, течений. Решение этой проблемы требует комплексного подхода с применением теоретических и экспериментальных методов.

Сформулированы цели и задачи исследования.



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.