авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 |

Контактные задачи для узлов трения с двухслойными композициями триботехнического назначения

-- [ Страница 1 ] --

На правах рукописи

Иваночкин Павел Григорьевич

КОНТАКТНЫЕ ЗАДАЧИ ДЛЯ УЗЛОВ ТРЕНИЯ

С ДВУХСЛОЙНЫМИ КОМПОЗИЦИЯМИ

ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ

01.02.04 – Механика деформируемого твердого тела

05.02.04 – Трение и износ в машинах

Автореферат диссертации на соискание

ученой степени доктора технических наук

Ростов-на-Дону – 2009

Работа выполнена в государственном образовательном учреждении высшего профессионального образования «Ростовский государственный университет путей сообщения»

Научные консультанты: академик РАН, доктор

технических наук, профессор

Колесников Владимир Иванович

доктор физико-математических наук

Чебаков Михаил Иванович

Официальные оппоненты: академик РАН, доктор

физико-математических наук, профессор

Бабешко Владимир Андреевич

доктор физико-математических наук, профессор Селезнев Михаил Георгиевич

доктор технических наук, профессор

Ахвердиев Камил Самед оглы

Ведущая организация: Институт проблем механики РАН

Защита состоится « » 2009 г. в часов

на заседании диссертационного совета Д 212.058.03

в ГОУ ВПО Донской государственный технический университет (ДГТУ) по адресу: 344010, г. Ростов-на-Дону, пл. Гагарина 1, аудитория № 252

С диссертацией можно ознакомиться в библиотеке ДГТУ.

Автореферат разослан « » 2009 года

Ученый секретарь диссертационного совета

к.ф.-м.н., доцент Кренев Л.И.

Общая характеристика работы

Актуальность темы Прогресс в машиностроении, на транспорте и в других областях тесно связан с проблемой повышения долговечности узлов трения, в решении которой важную роль играют материалы с покрытиями. Трибологические характеристики узла определяются напряженно-деформированным состоянием (НДС) в области контакта, а также в тонких приповерхностных слоях. Сегодня общепризнанно, что наиболее рациональным путем, позволяющим направленно изменять напряженно-деформированное состояние в приповерхностном слое, является нанесение покрытий и модифицирование поверхностного слоя.

Использование покрытий на рабочих поверхностях деталей машин позволяет успешно решать задачу создания поверхностей трения с определенным комплексом требуемых эксплуатационных параметров.

Специфика работы узлов трения транспортных машин заключается в высоком уровне динамических нагрузок. Одним из путей повышения их работоспособности является использование в них двухслойных композиций, в которых покрытие обеспечивает антифрикционные свойства, а подложка – несущую способность и демпфирование.

При рассмотрении тел с покрытиями обычно в качестве модели используют двухслойное основание – полуплоскость с тонким покрытием. При этом для описания покрытия часто применяются упрощенные модели мягких или твердых покрытий (модели пластин, накладок, стрингеров).

Отличительной особенностью рассматриваемого круга задач является то, что толщина подложки соизмерима с толщиной покрытия и поэтому для описания покрытия и подложки необходимо использование уравнений теории упругости без использования прикладных теорий тонкостенных элементов.



Кроме того, при скользящем контакте необходимо учитывать влияние на напряженное состояние касательных напряжений в зоне контакта, что резко усложняет задачу.

Оптимизация технологических процессов создания материалов с покрытиями предполагает проведение предварительных расчетов, по меньшей мере, на прочность и ресурс. Расчеты на прочность связаны с определением напряженно-деформированного состояния в каждой точке детали и сравнении его с предельно допустимым. Определение же НДС внутри взаимодействующих тел, невозможно без знания закона изменения контактного давления по области контакта. Определение же распределения контактных напряжений сводится к решению контактных задач.

С другой стороны, вопросы определения долговечности (ресурса) детали связаны с необратимым изменением формы взаимодействующих тел, обусловленных их изнашиванием. Эти изменения соизмеримы с деформациями тел и поэтому должны приниматься во внимание при оценке эволюции контактных характеристик (распределения давлений, размера области контакта, сближения) и внутренних напряжений. Таким образом, проблема расчетной оценки долговечности связана с решением соответствующих износоконтактных задач.

Работа выполнялась в рамках «Программы создания перспективных технических средств и технологий» ОАО РЖД, Федеральной целевой комплексной программы «Интеграция науки и высшего образования России на 2002-2006 г.г» проект № И-0371/1377, а также по грантам Российского Фонда Фундаментальных Исследований: проекты 05-01-00306, 06-08-01257, 07-08-00730, 08-08-00873, 08-08-900021-Бел.

Целью работы является разработка на основе закономерностей механики контактного взаимодействия композиции «подложка-покрытие» теоретических основ создания двухслойных материалов триботехнического назначения, обеспечивающих повышение долговечности узлов трения.

Основная идея работы заключается в построении математических моделей композиции «основной материал-покрытие», отражающих связь показателей качества узла трения с его конструктивными характеристиками и физико-механическими свойствами используемых материалов.

Для достижения поставленной цели необходимо решение следующих задач:

  1. Постановка контактных задач теории упругости для композиции «подложка-покрытие» в случае плоской, цилиндрической и сферической формы деталей и сведение рассматриваемых контактных задач к интегральным уравнениям.
  2. Разработка метода решения полученных интегральных уравнений, позволяющего строить достаточно точные решения для любых значений параметров задач.
  3. Установление степени влияния конструктивных характеристик и физико-механических свойств используемых материалов на напряженно-деформированное состояние и деформационно-силовые параметры контактных зон.
  4. Проведение сравнения полученных результатов с известными решениями контактных задач для узлов трения;
  5. Определение влияния нагрузочно-скоростных параметров на коэффициент трения и интенсивность изнашивания рассматриваемых композиций.
  6. Разработка методики по рациональному конструированию двухслойной композиции триботехнического назначения.

Научная новизна

– на основе закономерностей механики контактного взаимодействия создана модель двухслойной композиции триботехнического назначения, описывающая связь показателей качества узла трения с его конструктивными параметрами и физико-механическими свойствами используемых материалов;

– методика расчета толщин покрытий для достижения максимальной износостойкости поверхностей с учетом влияния напряженно-деформированного состояния поверхностных слоев деталей с покрытиями;

– результаты теоретических и экспериментальных исследований: влияние геометрических и физико-механических характеристик композиции на напряженно-деформированное состояние узла, установление основных закономерностей трения и изнашивания материалов с покрытиями и определение влияния нагрузочно-скоростных параметров на интенсивность изнашивания;

– общий методический подход к оптимизации узлов трения с покрытиями.

Практическая значимость работы. Предложенные в работе методы расчетной оценки прочности, фрикционной термостойкости и долговечности двухслойных композиций триботехнического назначения были использованы при разработке и создании новых высокоэффективных антифрикционных самосмазывающихся композитов для узлов трения железнодорожного транспорта. Предлагаемые расчетные формулы доведены до инженерного уровня, что позволило значительно сократить объем проводимых натурных испытаний, а также рекомендовать конструктивные параметры узлов.

На защиту выносятся:

  1. Комплексный метод расчета долговечности двухслойной композиции, основывающийся на системно методологическом подходе, позволяющий установить количественную связь между режимом эксплуатации, физико-механическими свойствами материалов и конструктивными параметрами узла трения с одной стороны и расчетной долговечностью – с другой.
  2. Результаты теоретических и экспериментальных исследований влияния внешних и внутренних факторов на текущие эксплуатационные параметры двухслойной композиции.
  3. Инженерная методика расчета ресурса подшипников скольжения с двухслойными втулками по износу, учитывающая механические, теплотехнические и трибологические свойства материалов, геометрию сопряжения и условия их нагружения.
  4. Методика проектирования двухслойных трибосопряжений с оптимальны- ми свойствами.

Аппробация работы. Основные положения диссертации были доложены и обсуждены на 18 международных и 5 Всероссийских научно-технических конференциях, в том числе на VIII Всероссийском съезде по теоретической и прикладной механике (Екатеринбург, 2001 г.), 4-th Euromech Nonlinear Oscillations Conference (Москва, 2002 г.), «Mechanical Engineering Technologies 04» Fourth International Congress Proceedings (Варна, Болгария, 2004); Международном симпозиуме по транспортной триботехнике «Транстрибо 2005» (Санкт-Петербург, 2005 г.) Международной научно-технической конференции «Актуальные проблемы трибологии» (Самара, 2007 г.); XXXV Summer School-Conference «Advanced Problems in Mechanics» (Санкт-Петербург, 2007 г.), Международной конференции «Актуальные проблемы механики сплошной среды» (Ереван, 2007 г.).

Работа в целом доложена, обсуждена и одобрена на заседании кафедры «Теоретическая механика» РГУПС.

Публикации. Основное содержание диссертации отражено в 45 печатных работах, из них 12 работ опубликованы в изданиях, рекомендованных ВАК.

Структура и объем диссертации. Диссертация состоит из введения, шести глав, основных выводов, списка литературы и приложений. Работа изложена на 215 стр. машинописного текста, который содержит 85 рис., 26 табл. Библиография 208 наименований.

Содержание работы

Во введении обоснована актуальность темы диссертации, сформулирова- на цель, задачи и основные положения, выносимые на защиту, научная новизна и практическая значимость диссертационной работы.

В главе 1 анализируются проблемы повышения эксплуатационной надежности узлов трения машин и механизмов, связанные с использованием материалов с покрытиями. На антифрикционные характеристики и работоспособность узлов трения с тонкослойными покрытиями большое влияние оказывает ряд факторов и особенно следующие два параметра: структурное состояние покрытия и его толщина. Первый является по существу обобщенной характеристикой метода и технологии создания покрытия, а второй во многом определяет нагрузочный и тепловой режимы работы узла трения. Так наличие оптимальной толщины покрытия обусловлено «равновесием» деформационных и тепловых процессов в покрытии, основании и контртеле, на которые в свою очередь оказывают влияние многочисленные технологические и эксплуатационные факторы.

Высокий уровень динамических нагрузок в узлах трения транспортных машин и необходимость работы в течение длительного времени без специального обслуживания приводят к широкому применению полимерных материалов в этих узлах. Одним из путей повышения работоспособности таких сопряжений является использование двухслойных композиций, в которых покрытие обеспечивает антифрикционные свойства, а подложка – несущую способность и демпфирование. Работоспособность такой композиции существенно зависит от применяемых материалов, а также от конструкции и соотношения геометрических размеров основных элементов, определяющих распределение нагрузки, демпфирование колебаний, условия теплоотвода и другие эксплуатационные характеристики.

Так увеличение толщины подложки, с целью усиления демпфирующей способности и стойкости к вибрационным воздействиям, способствует увеличению зоны контакта и, следовательно, уменьшению максимального контактного давления, но с другой стороны увеличение толщины подложки значительно ухудшает условия теплоотвода из зоны трения, усиливает тепловую напряженность и увеличивает интенсивность изнашивания.





Следовательно, при разработке такой композиции, необходимо для обеспечения требуемого ресурса подобрать материалы подложки и покрытия и соответствующие им оптимальные геометрические размеры.

Рассмотрение вопросов контактного взаимодействия поверхностей в узлах трения основывается на фундаментальных исследованиях Н.М. Алексеева, В.А. Белого, Д.Г. Громаковского, Н.Б. Демкина, Ю.Н. Дроздова, И.В. Крагельского, А.П. Краснова, В.С. Комбалова, В.И. Колесникова, Л.И. Куксеновой, А.А. Кутькова, Ю.К. Машкова, Н.К. Мышкина, Н.М. Михина, А.И. Свириденка, А.В. Чичинадзе и других.

Композиция «основной материал-покрытие» представляет, по сути, некоторую поверхностную конструкцию со свойствами, не достижимыми отдельно ни материалом основы, ни материалом поверхностного слоя. Композицию «подложка-покрытие» следует рассматривать как единое целое, а ее комплексное исследование должно базироваться на взаимосвязи структуры, свойств и конструктивной прочности.

Вопросы анализа прочности и жесткости конструкции, как известно, сводятся к рассмотрению соответствующих контактных задач. Большой вклад в развитие методов решения контактных задач теории упругости внесли следующие ученые: Б.А. Абрамян, С.М. Айзикович, В.М. Александров, В.А. Бабешко, А.В. Белоконь, А.О. Ватульян, И.И. Ворович, Л.А. Галин, Е.В. Глушков, Р.В. Гольдштейн, Э.И. Григолюк, А.Н. Гузь, В.В. Калинчук, Л.И. Качанов, Е.В. Коваленко, А.В. Манжиров, Н.Ф. Морозов, В.И. Моссаковский, В.В. Панасюк, В.З. Партон, Г.Я. Попов, О.Д. Пряхина, М.Г. Селезнев, Л.И. Слепян, Б.И. Сметанин, Б.В. Соболь, А.Н. Соловьев, М.А. Сумбатян, А.Ф. Улитко, Ю.А. Устинов, Я.С. Уфлянд, М.И. Чебаков, Г.П. Черепанов и другие.

Анализ моделей, используемых для оценки долговечности подшипниковых узлов в условиях сухого трения показал, что расчет долговечности подобных сопряжений основан на решении контактных задач механики деформируемого твердого тела с переменной зоной контакта, что обусловлено изнашиванием контактирующих элементов.

Большой вклад в разработку износоконтактных задач внесли В.М. Александров, О.Б. Богатин, Л.А. Галин, М.А. Галахов, И.Г. Горячева, Д.В. Грилицкий, М.Н. Добычин, Ю.Н. Дроздов, Е.В. Коваленко, М.В. Коровчинский, А.Г. Кузьменко, Р.И. Мазинг, В.А. Моров, Ю.А. Необердин, А.С. Проников, И.А. Солдатенков, М.И. Теплый, П.П. Усов, И.Н. Черский и другие.

Вторая глава посвящена исследованию контактной прочности плоской двухслойной композиции триботехнического назначения.

В отличие от традиционной постановки контактных задач для тел с покрытиями нами рассматривается случай, когда толщина подложки соизмерима с толщиной покрытия. Решается плоская задача теории упругости о взаимодействии штампа с основанием, образованным двумя упругими слоями с различными механическими свойствами и жестко соединенными между собой и с недеформируемым основанием. Исследуется влияние геометрических и механических параметров задач на напряженно-деформированное состояние такого основания, как на его поверхности, так и во внутренних точках, с целью их оптимального подбора для обеспечения необходимой несущей способности моделируемых таким образом узлов трения.

Предполагается, что подошва штампа имеет форму параболы или плоская, в зоне контакта нормальные и касательные напряжения связаны законом Кулона, а на штамп действуют нормальные и касательные усилия, при этом система штамп-двухслойное основание находится в условиях предельного равновесия и штамп в процессе деформации слоя не поворачивается.

В случае плоской деформации задача сводится к соответствующим уравнениям Ляме при следующих граничных условиях:

 1 – Схема контакта штампа с-0

Рисунок 2.1 – Схема контакта штампа с двухслойной полосой

,

,

,

Здесь – перемещения в упругих слоях соответственно вдоль осей ; – нормальные и касательные напряжения (индексы 1 и 2 относятся соответственно к слоям 1 и 2); для задачи 1 –, а для задачи 2 –, – коэффициент трения, – зона контакта, – радиус штампа, – осадка штампа.

С помощью преобразования Фурье, поставленные контактные задачи сводятся относительно неизвестных нормальных контактных напряжений под штампом к следующему интегральному уравнению (ИУ)

, (2.1)

ядро, которого представимо в виде двух слагаемых

,

(задача 1), (задача 2).

Здесь – коэффициент Пуассона и модуль сдвига – того слоя.

Ядро интегрального уравнения (2.1) имеет логарифмическую особенность и может быть представлено в виде

(2.2)

где функции выражаются сходящимися при любых значениях интегралами.

Решение (2.1) с ядром (2.2) получим методом коллокации, воспользовавшись результатами работы В.В.Воронина и В.А.Цецехо. Проведем дискретизацию ИУ по следующей схеме

(2.3)

где – значения контактных напряжений в узлах коллокации – интервал коллокации, – число узлов коллокации.

Окончательно для нахождения значений контактных напряжений в узлах коллокации получим систему линейных алгебраических уравнений

(2.4)

где

Коэффициенты содержат однократные сходящиеся интегралы по полубесконечному промежутку от осциллирующих экспоненциально затухающих функций, и современные вычислительные алгоритмы позволяют их находить с необходимой точностью.

Для вычисления силы и момента , действующих на штамп, можно использовать соотношения

. (2.5)

После определения распределения контактных напряжений был проведен расчет компонентов тензора напряжений во внутренних точках двойного слоя, соответствующие вычисления проводились на основе следующих соотношений (–номер слоя).

Также во внутренних областях слоев вычислялось эффективное напряжение в соответствии с четвертой теорией прочности (критерий пластичности Мизеса)



Pages:   || 2 | 3 | 4 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.