авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 |

Разработка методов анализа динамики и оценки работоспособности раскрывающихся крупногабаритных космических конструкций ферменного типа

-- [ Страница 1 ] --

На правах рукописи

Зимин Владимир Николаевич

РАЗРАБОТКА МЕТОДОВ АНАЛИЗА ДИНАМИКИ

И ОЦЕНКИ РАБОТОСПОСОБНОСТИ

РАСКРЫВАЮЩИХСЯ КРУПНОГАБАРИТНЫХ

КОСМИЧЕСКИХ КОНСТРУКЦИЙ ФЕРМЕННОГО ТИПА

01.02.06 – Динамика, прочность машин,

приборов и аппаратуры

05.07.02 – Проектирование, конструкция и производство

летательных аппаратов

Автореферат диссертации на соискание ученой степени

доктора технических наук

Москва-2008 г.

Работа выполнена в Московском государственном техническом

университете имени Н.Э. Баумана

Официальные оппоненты:

доктор технических наук, профессор Светлицкий В.А.

доктор технических наук, профессор Шклярчук Ф.Н.

доктор технических наук, профессор Борзых С.В.

Ведущая организация – ОАО "Информационные спутниковые системы" имени академика М.Ф. Решетнева

Защита состоится " 30 " октября 2008 г. в 14 час. 30 мин.

на заседании диссертационного совета Д 212.141.03 при Московском государственном техническом университете им. Н.Э. Баумана,

по адресу: 105005, Москва, 2-ая Бауманская ул., д. 5

С диссертацией можно ознакомиться в библиотеке МГТУ им. Н.Э. Баумана

Автореферат разослан " " _____________ 2008 г.

Ученый секретарь диссертационного совета

к.ф-м.н., доц. А.Ю. Карпачев


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Перспективы развития радиоастрономии, солнечной энергетики, космической связи, исследования земной поверхности и других планет из космоса в настоящее время непосредственно связаны с возможностью вывода в космос крупногабаритных конструкций. В настоящее время в России и за рубежом ведутся исследования, направленные на создание в космосе конструкций различного класса, которые имеют большие размеры в том или ином измерении: космические телескопы и антенны, энергетические и научные платформы, крупногабаритные солнечные батареи и т.д. Одним из важных и бурно развивающихся направлений в области создания крупногабаритных космических конструкций является разработка раскрывающихся панелей солнечных батарей, а также антенн, устанавливаемых на космических аппаратах (КА) различного назначения.

Проблема создания навесных систем специального функционального назначения с габаритами, превышающими размеры КА, сводится к разработке складных конструкций, удовлетворяющих таким противоречивым требованиям, как минимальные вес и объем в сложенном транспортном состоянии, высокая надежность раскрытия из транспортного состояния в рабочее положение и функционирования на орбите, максимальная площадь рабочей поверхности в раскрытом состоянии, стабильные эксплуатационные характеристики в условиях действия нагрузок. Работоспособность таких конструкций определяется, главным образом, тем, насколько велики возникающие в них усилия при развертывании, поэтому обеспечение их надежного раскрытия связано с решением сложных задач механики. Особое место среди создаваемых в настоящее время систем занимают ферменные конструкции, раскрытие которых происходит автоматически при срабатывании механизма расчековки за счет первоначально накопленной упругой энергии пружин, расположенных в шарнирных соединениях. Отличие этих конструкций состоит в высокой технологичности и удовлетворении большинству из указанных выше требований. Ключевым элементом ферменных конструкций, определяющим в конечном счете их характеристики, является несущий силовой каркас. Именно он обеспечивает минимальные габариты в сложенном положении и высокую жесткость конструкции в раскрытом рабочем состоянии.



Принципы, заложенные в конструктивную схему ферменных каркасов, позволяют на базе его элементарной ячейки, например, в форме тетраэдра, построить ферменные модули разнообразных пространственных конфигураций (сферические, цилиндрические, параболические и другие поверхности) с различными очертаниями внешнего контура. Габаритные размеры формируемой в результате раскрытия конструкции определяются конкретными требованиями решаемой технической задачи.

Исследованию динамики многозвенных механических конструкций посвящено большое количество работ. Проблемы динамики механических систем наиболее полно изложены в работах И.И. Артоболевского, А.Е. Кобринского, А.Г. Овакимова, Ф.М. Диментберга, Ю.А. Степаненко, В.С. Медведева, А.Ф. Верещагина, А.Г. Лескова, В.Г. Бойко, Й. Витенбурга, Уикера мл., Т.Р. Кейна, М. Вукобратовича, Никравеша и др. Методы анализа динамики многозвенных систем переменной кинематической структуры излагаются в работах Я.Г. Пановко, Н.А. Кильчевского, Е.М. Рубановича, А.М. Формальского, С.В. Рутковского, С.В. Борзых, И.С. Ососова, Ю.Н. Щиблева, В.И. Паничкина, В.Г. Боярко, В.П. Малкова, Ю.А. Фатья-нова, Кулиева, Шабаны, Уихейджа, Хауга, Дубовски и др.

Несмотря на достигнутые значительные успехи в области проектирования таких конструкций, важной остается задача обеспечения плавного и надежного раскрытия крупногабаритных конструкций, прежде всего, ферменного типа, состоящих из десятков, сотен и даже тысяч взаимосвязанных между собой элементов, при гарантированном обеспечении их последующего функционирования.

В настоящее время в литературе широко представлены также исследования, посвященные моделированию динамики раскрытия солнечных батарей космических аппаратов различных кинематических схем. Однако они, как правило, не относятся к конструкциям ферменного типа. Изложенное позволяет констатировать, что при очевидных запросах практики, в выполненных ранее исследованиях практически отсутствуют сведения о методах анализа динамики раскрытия конструкций ферменного типа и оценки их работоспособности на этапе создания, включая проектирование, изготовление, экспериментальную отработку, а также моделирование различных нештатных ситуаций.

Цель работы состоит в повышении качества, сокращении сроков и снижении материальных затрат при проектировании, изготовлении и наземной отработке раскрывающихся крупногабаритных космических конструкций ферменного типа.

Для достижения поставленной цели в диссертации решаются следующие задачи:

– разработка методов моделирования раскрытия крупногабаритных конструкций ферменного типа из транспортного положения в рабочее состояние в условиях космического пространства;

– разработка новых научно обоснованных подходов, методов анализа и комплекса математических моделей динамики раскрытия конструкций ферменного типа, а также соответствующего алгоритмического и программного обеспечения, позволяющих автоматизировать процесс определения рациональных параметров конструкций;

– разработка эффективной модели для динамического расчета ферменных конструкций, содержащих большое количество шарнирных соединений, обеспечивающих минимальный транспортный объем конструкций, на основе детального исследования влияния жесткостей отдельных элементов конструкций ферменного типа на их динамические характеристики;

– разработка метода оценки прочности элементов ферменных конструкций в момент их полного раскрытия;

– разработка метода оценки работоспособности раскрывающихся космических конструкций ферменного типа на этапе их создания.

Научная новизна работы определяется следующим:

1. Предложен новый подход к разработке специализированных моделей для анализа динамики крупногабаритных раскрывающихся космических конструкций ферменного типа. Разработанные модели и вычислительные процедуры не содержат лишних элементов, в связи с чем свойственные специализированным моделям вычислительные преимущества перекрывают предполагаемые достоинства универсальных моделей. Предложенный подход продемонстрирован на конкретных примерах расчета ферменных конструкций.

2. Разработаны математические модели, алгоритмы и программы, позволяющие исследовать процесс раскрытия плоских и осесимметричных конструкций ферменного типа, провести анализ динамики и оценочный прочностной расчет.

3. Исследованы основные факторы, влияющие на раскрытие и работоспособность конструкций ферменного типа. Выявлены закономерности динамического нагружения элементов конструкции при их установке на упоры и фиксаторы. Полученные новые результаты открывают большие возможности для оптимизации конструктивных решений при проектировании крупногабаритных раскрывающихся космических конструкций ферменного типа с надежным и плавным раскрытием.

4. Выявлены закономерности влияния жесткостных характеристик отдельных элементов конструкции ферменного типа на ее динамические характеристики. Определен диапазон частот, который соответствует собственным колебаниям конструкций данного класса.

5. Получены определяющие критерии при моделировании процесса раскрытия конструкций ферменного типа. Продемонстрирована возможность адекватного отражения поведения натурной конструкции ферменного типа в невесомости при проведении испытаний в земных условиях при соответствующем выборе материалов и масштабов моделей конструкции.

Достоверность результатов работы подтверждена их получением на основе использования известных законов, положений, определений, формул и теорем механики, сопоставлением с соответствующими экспериментальными данными и известными результатами других авторов, сравнением результатов расчета, полученных разными методами.

Практическая значимость работы состоит в том, что разработанные методы анализа динамики раскрытия и оценки работоспособности раскрывающихся крупногабаритных космических конструкций ферменного типа, расчетно-теоретический аппарат и программное обеспечение позволяют автоматизировать процесс определения рациональных параметров конструкции, повысить качество и сократить сроки разработки, создания и отработки раскрывающихся крупногабаритных космических конструкций ферменного типа. Результаты работы использованы в ГК НПЦ им. М.В.Хруничева, НПО  Машиностроения и ОКБ МЭИ при разработке раскрывающихся крупногабаритных космических антенн ферменного типа.

На защиту выносятся следующие положения:

1. Комплексный подход к анализу динамики раскрывающихся крупногабаритных космических конструкций ферменного типа на основе совокупности разработанных моделей.

2. Комплекс методик, алгоритмическое и программное обеспечение для эффективного выполнения проектных расчетов и анализа различных вариантов компоновки конструкций.

3. Методика оценки влияния массовых характеристик элементов конструкций ферменного типа на динамику и параметры раскрытия.

4. Методика оценки влияния жесткостных характеристик элементов конструкций ферменного типа на значения частот их упругих колебаний.

5. Метод оценки работоспособности раскрывающихся крупногабаритных конструкций ферменного типа на этапе их создания.

6. Определяющие критерии для моделирования процесса раскрытия крупногабаритных конструкций ферменного типа при проведении испытаний в земных условиях.

Апробация работы. Основные положения диссертации и полученные результаты докладывались на:

– VI Межотраслевой школе по проблемам проектирования конструкций (Красноярск, 1985);

– II Всесоюзной конференции "Современные проблемы строительной механики и прочности летательных аппаратов" (Куйбышев, 1986);

– I Всесоюзной научно-технической конференции "Математические методы анализа и оптимизации зеркальных антенн различного назначения" (Свердловск, 1989);

– Гагаринских научных чтениях по космонавтике и авиации (Москва, 1991);

– Международной конференции по крупногабаритным конструкциям (Новгород, 1993);

– Международных симпозиумах "Динамические и технологические проблемы механики конструкций и сплошных сред" (Ярополец: III (1997), IV (1998), V (1999), VI (2000), VII (2001), VIII (2002), XI (2005), XIII (2007));

– Международной научной конференции "Ракетно-космическая техника: фундаментальные проблемы механики и теплообмена" (Москва, 1998);

– III Международной конференции по мобильным и быстрособираемым конструкциям (Мадрид, 2000);





– XI Международной конференции по численным методам и экспериментальным исследованиям (Аликанте, 2001);

– VIII Всероссийском съезде по теоретической и прикладной механике (Пермь, 2001);

– V Международном семинаре "Современные проблемы прочности" имени В.А. Лихачева (Старая Русса, 2001);

– III Международной конференции--выставке "Малые спутники. Новые технологии, миниатюризация. Области эффективного применения в XXI веке" (Королев, 2002);

– XII Международной конференции по вычислительной механике и современным прикладным программным системам (Владимир, 2003);

– IX Всероссийском съезде по теоретической и прикладной механике (Нижний Новгород, 2006);

– V Всероссийской научной конференции "Фундаментальные и прикладные проблемы современной механики" (Томск, 2006);

– Международных научных конференциях "Решетневские чтения" (Красноярск, IX (2005), X (2006), XI (2007));

– XXXI академических чтениях по космонавтике (Москва, 2007).

– III Международной научной конференции "Ракетно-космическая техника: фундаментальные и прикладные проблемы" (Москва, 2007);

– XI Международной конференции "Современные проблемы механики сплошной среды" (Ростов-на-Дону, 2007).

Личный вклад автора. Все научные положения и результаты, изложенные в диссертации, получены автором. Во всех случаях заимствования других результатов в диссертации приведены ссылки на литературные источники.

В работах, опубликованных в соавторстве, личный вклад автора состоит в формулировании проблем, постановке задач, создании теоретических основ для их решения, разработке математических моделей, алгоритмов расчета и анализе полученных результатов.

Автор выражает искреннюю признательность коллегам по творческому коллективу отдела "Крупногабаритные космические конструкции"
НИИСМ МГТУ им. Н.Э. Баумана, вместе с которыми выполнялись исследования, лежащие в основе диссертации. Их участие отражено в цитируемых в работе совместных публикациях. Особо следует сказать о том, что этот труд был бы невозможен без многолетнего сотрудничества с В.И. Усюкиным, В.Е. Мешковским и И.М Колосковым.

Публикации результатов. По теме диссертации опубликовано
29 работ, из них 7 в рецензируемых научных журналах Перечня ВАК.

Структура и объем работы. Диссертация состоит из введения, пяти глав, общих выводов, списка литературы. Материалы исследований изложены в работе на 309 страницах. Она содержит 165 рисунков и 11 таблиц.

Список цитируемой литературы включает 151 источник.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована цель работы, определена степень научной новизны, практической значимости и достоверности полученных результатов.

Первая глава посвящена разработке математической модели раскрытия конструкций ферменного типа.

Классическая схема анализа крупногабаритных космических конструкций включает следующие основные этапы: выбор расчетной модели, с той или иной степенью полноты отображающей свойства реальной конструкции и формирование на ее основе соответствующей математической модели; проведение анализа влияния определяющих параметров; проверка адекватности характеристик модели и реальной конструкции на основе физического или численного эксперимента. При необходимости производится уточнение расчетной модели, и процедура анализа повторяется. Критерием правильности выбора расчетной модели является достижение требуемой точности анализа исходной конструкции. При этом при проектировании и создании крупногабаритных космических конструкций инженеру–-разработчику всегда приходится искать компромисс между желаемой точностью результата и допустимыми экономическими и временными затратами, связанными с его получением.

При создании раскрывающихся крупногабаритных космических конструкций значительная роль отводится натурным экспериментам, результаты которых являются основным критерием надежности и функциональной пригодности разрабатываемых конструкций.

Для конструкций, функционирующих в космическом пространстве, важными факторами становятся невесомость, отсутствие или значительная разреженность атмосферы. Для воссоздания этих условий в наземных экспериментах требуются дорогостоящие стенды имитации невесомости, уникальные по размерам вакуумные камеры. Проведение полномасштабной экспериментальной отработки таких конструкций оказывается чрезвычайно дорогостоящим делом. Поэтому математический эксперимент, использующий разрабатываемые расчетные модели крупногабаритных космических конструкций с идентифицированными параметрами, является важным этапом проверки и обоснования функциональной пригодности проектируемых систем

Сложная в прикладном плане задача математического моделирования динамики раскрывающихся конструкций ферменного типа как системы многих тел, очевидно, не может быть решена с помощью одной универсальной модели. Создание такой модели вызывает принципиальные затруднения, связанные с отсутствием полных исходных данных о геометрических и физических параметрах конструкции, а также с не всегда преодолимыми вычислительными трудностями и большими затратами машинного времени. Неполнота информации обусловлена неточностями в изготовлении конструкции, разбросом физико-механических характеристик применяемых материалов, несовершенствами соединительных узлов и многими другими факторами.

На практике, как правило, динамическое поведение конструкции анализируют с помощью совокупности моделей, каждая из которых нацелена на решение конкретной технической задачи: либо на определение динамических характеристик конструкции, либо на исследование динамики процесса раскрытия конструкции. Таким образом, говоря о модели динамики таких конструкций, мы имеем в виду не одну модель, а совокупность дополняющих и развивающих друг друга моделей – своего рода иерархию моделей. Можно ожидать, что темпы усложнения проектируемых раскрывающихся ферменных конструкций и роста их размерности как динамических систем будут постоянно опережать развитие методов и технических средств математического моделирования подобных конструкций. Поэтому представляется целесообразным проводить анализ динамики раскрывающихся крупногабаритных конструкций ферменного типа в том объеме, который необходим для решения частных технических задач их проектирования, создания и экспериментальной отработки на основе совокупности специализированных моделей. Такой подход необходимо рассматривать в качестве основного метода анализа динамики конструкций данного класса.

Первым шагом формирования расчетной модели, как правило, является принятие совокупности гипотез о характере деформирования элементов и условиях их совместной работы в конструкции, особенностях взаимодействия с внешней средой, характере приложения нагрузок и т.п. Вторым, не менее важным шагом, является выбор метода анализа и соответствующей модели.



Pages:   || 2 | 3 | 4 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.