авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 | 5 |

Механика и электродинамика пристеночной плазмы

-- [ Страница 1 ] --

На правах рукописи

КОТЕЛЬНИКОВ Михаил Вадимович

МЕХАНИКА И ЭЛЕКТРОДИНАМИКА ПРИСТЕНОЧНОЙ ПЛАЗМЫ

Специальность 01.02.05 - механика жидкости, газа и плазмы

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Москва 2008

Работа выполнена на кафедре «Прикладная физика» в Московском авиационном институте (государственном техническом университете)

Официальные оппоненты:

доктор физико-математических наук,

заслуженный деятель науки РФ,

профессор Алексеев Борис Владимирович,

доктор физико-математических наук,

заслуженный деятель науки и техники РФ,

профессор Киреев Владимир Иванович,

доктор технических наук,

профессор Ким Владимир Павлович

Ведущая организация: Центральный аэрогидродинамический институт

имени Жуковского Н.Е.

Защита диссертации состоится 26 сентября 2008 г. в 10-00 на заседании Диссертационного совета Д 212.125.14 при Московском авиационном институте (государственном техническом университете) по адресу: 125993, Москва, Волоколамское шоссе, д. 4, тел. (499) 158-58-62.

С диссертацией можно ознакомиться в библиотеке МАИ.

Автореферат разослан ____ ____________ 2008 г.

Просим принять участие в работе совета или прислать отзыв в одном экземпляре, заверенный печатью организации.

Ученый секретарь

Диссертационного совета Д 212.125.14 Гидаспов В.Ю.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Низкотемпературная плазма как четвертое состояние вещества играет всё возрастающую роль в нашей жизни. Она является рабочим телом в самых разнообразных приборах и устройствах. Плазма дугового разряда используется в различного типа технологических плазмотронах, предназначенных для сварки и резки металлов, напыления пленок со специальными свойствами, и, наоборот, распыления вредных пленок, инициирования плазмохимических реакций, изготовления интегральных схем и т.д. Плазма тлеющего разряда применяется в лампах дневного света, в некоторых типах лазеров и электронных приборов, в рекламных целях. Плазма СВЧ-разряда имеет место в различного назначения СВЧ-генераторах. В последние десятилетия для коррекции орбиты спутников применяются высоко эффективные движители малой тяги, рабочим телом для которых является плазма. В обозримом будущем более мощные плазменные движители (ПД) могут быть использованы как маршевые движители для полета на Марс и другие планеты солнечной системы.

С другой стороны низкотемпературная плазма может быть средой обитания для авиационно-космической техники. При движении сверхзвуковых самолетов и ракет в атмосфере Земли в головной ударной волне возникает слабоионизованная плазма, которая обтекает летательный аппарат (ЛА). С ростом скорости летательного аппарата растут концентрация и температура плазмы в пограничном слое. Соответственно возрастают тепловые потоки на поверхность аппарата, для нейтрализации которых применяется специальная тепловая защита. Пристеночная плазма может осложнять радиосвязь ЛА с наземными станциями слежения. Проблема электромагнитной совместимости плазменных струй, истекающих из ПД, и пристеночных плазменных образований с каналами радиосвязи является актуальной до настоящего времени. Искусственные спутники Земли и космические станции движутся в разреженной ионосферной плазме. Выходящие на орбиту ЛА и спускаемые с орбиты аппараты с неизбежностью вынуждены работать в окружении низкотемпературной плазмы. Плазма встречается и в природных условиях. Это искровой и коронный разряд (например, обычная молния), шаровые молнии и т.д. Пламя обычной ацетиленовой горелки, особенно при инжекции в него легко ионизируемых солей щелочных металлов, представляет собой слабоионизованную столкновительную плазму. Плазма возникает при взаимодействии лазерного и других типов излучения с веществом. Она широко используется в научных экспериментах при разработке техники будущего (плазма капиллярного разряда, искусственные образования типа шаровой молнии и др.).

Из приведенного далеко не полного обзора ясно, что исследование плазменного состояния вещества является актуальной задачей. Исследование осуществляется путем проведения физических и вычислительных экспериментов. Наиболее сложной областью для исследования является пристеночная плазма, поскольку в ней возникает возмущенная зона с достаточно сложным распределением потенциала, с отличными от максвеловских функциями распределения заряженных частиц. В пристеночной области возможны многочисленные элементарные процессы (рассеяние, отражение, поглощение, эмиссия, инжекция, сублимация, диссоциация, ионизация, рекомбинация, возбуждение и т.д.), существенно осложняющие физическую, математическую и вычислительную модели задачи. Комплексному исследованию методами вычислительного эксперимента (а иногда и физического эксперимента) пристеночных областей в плазме посвящена настоящая работа. В дополнение к сказанному отметим, что результаты исследований находят еще одну актуальную область применения – это развитие зондовых методов диагностики самой плазмы. В области механики и электродинамики пристеночной плазмы работало и работает огромное число исследователей, обзор работ которых приводится в начале каждой главы диссертации.

Цель работы

  • создать надежные методы расчета пристеночных слоев вблизи тел, обтекаемых низкотемпературной плазмой, в широком диапазоне изменения числа Кнудсена (0 Kn < );
  • исследовать структуру возмущенной зоны вблизи обтекаемых плазмой тел, включая область ближнего следа, в различных режимах течения;
  • на базе полученных зависимостей тока на тело от его потенциала разработать надежные методы зондовой диагностики плазменных потоков;
  • разработать теорию нестационарного зонда.

Научная новизна и значимость результатов исследования заключается в том, что впервые:

  1. С единых позиций сформулированы физические, математические и вычислительные модели механики и электродинамики пристеночной плазмы в достаточно общей постановке;
  2. С помощью созданного пакета прикладных программ получены функции распределения заряженных частиц вблизи заряженных тел, помещенных в поток бесстолкновительной плазмы как без магнитного поля, так и с магнитным полем. Показано их существенное отличие от аналогичных функций в покоящейся плазме;
  3. Получены распределения моментов функции распределения и самосогласованного электрического поля в лобовой, боковой и теневой областях заряженного цилиндра, обтекаемого потоком бесстолкновительной плазмы. Обнаружены и исследованы нелинейные эффекты, возникающие при совместном действии направленной скорости, электрических и магнитных полей;
  4. Дана физическая интерпретация обнаруженных новых нелинейных эффектов в пристеночных слоях плазмы в бесстолкновительном режиме;
  5. С помощью созданного пакета прикладных программ в режиме сплошной среды найдены области изменения характерных параметров задачи, в которых проявляется аномальная зависимость плотности тока от индукции магнитного поля (типа аномальной диффузии). Обнаружены также области, в которых плотность тока по обводу цилиндра проявляет немонотонность, в частности, ионный ток в теневой области может быть существенным;
  6. Исследован переходный режим с учетом всех возможных типов столкновений (ион-нейтрал, электрон-нейтрал, ион-ион, ион-электрон, электрон-электрон). Выявлено влияние столкновений на функции распределения заряженных частиц и их моменты;
  7. Получен достаточный для практики набор вольтамперных характеристик (ВАХ) цилиндрических зондов в поперечном потоке столкновительной и бесстолкновительной плазмы. Предложены новые методы обработки ВАХ;
  8. Разработана теория нестационарного зонда в столкновительном и бесстолкновительном режимах течения;
  9. Предложен и разработан метод расчета пристеночного слоя плазменного якоря электромагнитного ускорителя тел;
  10. Разработаны методы электромагнитного воздействия на параметры пограничного слоя;
  11. Предложена вычислительная модель расчета электромагнитного управления вектором тяги плазменного движителя.

Достоверность основных научных результатов подтверждается применением надежных математических моделей и проверенных вычислительных методов. Полученные в вычислительных экспериментах данные там, где это возможно, сравнивались с результатами других авторов и известными экспериментальными данными. Все сравнения дали положительный результат. Использованные математические и вычислительные модели в области механики и электродинамики пристеночной плазмы разработаны в рамках научной школы МАИ, которая исследует эти проблемы почти 50 лет.

Практическая ценность работы заключается в том, что

  1. Полученные функции распределения заряженных частиц в теневой области за спутником (в «следе») позволяют изучать взаимодействие данного спутника с другими телами, попавшими в его возмущенную зону;
  2. Расчет параметров собственной атмосферы вблизи спутника позволяет учитывать ее при проведении физических экспериментов на спутниках и космических станциях, что повысит точность и надежность таких экспериментов. Появляется также возможность проведения зондовых измерений в следе;
  3. Предложенные и количественно просчитанные варианты мягкого электромагнитного управления параметрами пограничного слоя позволяют решать ряд проблем, например, проблему создания радиопрозрачного канала;
  4. Предложенный метод расчета поворота плазменной струи в поперечном магнитном поле может быть полезен при разработке электромагнитных методов управления вектором тяги ПД;
  5. Разработанные достаточно строгие методы расчета пристеночных слоев в плазме могут быть полезны при расчете различных плазменных систем, в том числе и плазменных движителей;
  6. Используемый в численных моделях метод крупных частиц представляется весьма эффективным методом для расчета перемешивания и диспергирования многофазных проводящих смесей электромагнитными силами;
  7. Полученные в работе вольтамперные характеристики оказались важными для уточнения и расширения возможностей методов зондовой диагностики плазменных потоков.

Апробация работы. Основные результаты работы докладывались на 2-nd German-Russien conf. on Electric propulsion enqines and theiz technical applications (Moscow, Russia, 1993 г.); 24-th Int. Electric Propulsion conf. (Moscow, Russia, 1995); на международной конференции по вычислительной и прикладной механике (Россия, Москва, 1997 г); на Международной конференции по «Моделированию и исследованию сложных систем № 4, 5, 6, 7, 9, 10. (№ 4 Москва-Кашира, 1996; № 5 Севастополь, 1998; № 6 Севастополь, 1999; № 7 Севастополь, 2000; № 9 Севастополь, 2002; № 10 Севастополь, 2003; на Международной конференции по методам крупных частиц: теория и приложения (№9, 2000 г.; №10 2001 г.; №11, 2002 г.; №12, 2003 г.; №13, 2004 г.; №15, 2006 г.; №16, 2007 г.); на Международном симпозиуме «Динамические и технологические проблемы механики конструкций и сплошных сред» (Москва, 1999 г.), на 4-й и 6-й Международной конференции по Неравновесным процессам в соплах и струях (NPNJ, Санкт-Петербург, 2002 г., 2004 г.); на 12-й Международной конференции по вычислительной механике и современным прикладным программным средствам (Владмир, Россия, 2003); на 8-х Королёвских чтениях (Самара, Россия, 2005); на 33-й и 34-й Международной конференции по Физике плазмы и УТС (Звенигород, 2006, 2007); на XXXIII Гагаринских чтениях (Москва, 2007 г.).

Публикации. Основные результаты, вошедшие в диссертацию, опубликованы в 40 работах, в том числе 3-х научных монографиях, 10 научных статьях, 1 авторском свидетельстве на изобретение и 26 докладах и тезисах докладов на международных конференциях.

Структура диссертации. Изложение материала собственных исследований автора строится по единой схеме для каждого из возможных режимов течения: молекулярного, столкновительного и переходного. Сначала идет обзор работ предшествующих авторов и формулируется физическая модель задачи, затем формулируется математическая модель задачи и далее вычислительная модель. Заканчивается каждая из первых трех глав изложением полученных автором результатов и их обсуждением. В четвертой главе приведены примеры практических приложений результатов, полученных автором с использованием математических и вычислительных моделей, разработанных в первых трех главах.

Объем диссертации. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы и приложения. Она содержит 275 страниц машинописного текста, 155 иллюстрации, 146 наименований в списке цитируемой литературы.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ.

Во введении обосновывается актуальность темы, формулируются цели и задачи исследования, раскрывается место данной работы среди других работ по механике и электродинамике пристеночной плазмы, излагается краткое содержание диссертации по главам.

Первая глава диссертации посвящена исследованию механики и электродинамики пристеночной плазмы в молекулярном режиме. В обзоре работ предшествующих авторов особое внимание уделено кинетическому уравнению Больцмана и обобщенной больцмановской кинетике, впервые предложенной Б.В. Алексеевым, а также уравнениям Максвелла.

С целью сокращения необходимых ресурсов ЭВМ и в то же время обеспечения достаточной общности в постановке задачи рассматриваются следующие геометрии тел, обтекаемых разреженной плазмой:

  1. Цилиндр радиуса rp и потенциала p, расположенный в движущемся со скоростью v поперечном потоке плазмы. Внешнее магнитное поле может быть направлено вдоль оси цилиндра. Такое тело можно рассматривать как элемент конструкции спутника, а в зондовой теории как цилиндрический зонд, расположенный поперек потока.
  2. Удлиненный проводящий прямоугольник шириной 2rp и потенциала p, расположенный на большой обтекаемой плазмой со скоростью V пластине. Вектор V параллелен плоскости пластины и направлен вдоль короткой стороны прямоугольника. Внешнее магнитное поле, если оно существует, параллельно удлиненной стороне прямоугольника. Такое тело можно рассматривать как элемент боковой поверхности спутника, а в зондовой теории как плоский пристеночный зонд ленточного типа.

Обе рассмотренные конструкции имеют практические приложения и в вычислительном плане существенно экономят ресурсы ЭВМ, так как оказываются четырехмерными в фазовом пространстве. Для сравнения, тело сферической геометрии в аналогичной постановке должно рассматриваться в пятимерном фазовом пространстве. Система уравнений Власова-Пуассона в случае цилиндрической геометрии тела имеет вид (при указанном выше расположении направленной скорости и магнитного поля)

(1)
; E = -, (2)

где f - функции распределения ионов и электронов ( = i,e); vr, v - радиальная и азимутальная скорости частиц; E, - напряженность и потенциал электрического поля; q, m - заряд и масса частиц. Концентрация, плотность тока частиц у поверхности цилиндра и интегральный ток на цилиндр единичной длины запишутся так:

, (3)
, (4)
. (5)

В качестве начальной функции распределения будем рассматривать максвелловскую функцию распределения

f(0,r,,vr,v) = (n/)(m/(2kT))3/2exp[-m{(vr + Vcos)2 + (v - Vsin)2}/(2kT)], (6)

где n - концентрация частиц в невозмущенной плазме, T - температура компоненты , V - вектор скорости набегающего потока.

Для решения уравнения Пуассона задается значение при r = rp и его значение на внешней границе расчетной области, которое, как правило, считается нулевым. Функции распределения на внешней границе совпадают с (6), а на теле ставится условие идеальной каталитичности, т.е. ион, касаясь стенки, получает недостающий электрон, а электрон, коснувшись стенки, поглощается. Система (1)(6) составляет систему Власова-Пуассона вблизи заряженного цилиндра, обтекаемого поперечным потоком разреженной плазмы.

Выпишем теперь математическую модель Власова-Пуассона для плоского пристеночного электрода ленточного типа в декартовой системе координат (если B = 0):

, (7)
, E = -, (8)
, (9)
. (10)

Начальное условие для функции распределения

f(0,x,y,vx,vy) = (n/)(m/(2kT))3/2exp[-m{(vx + V)2 + Vy2}/(2kT)]. (11)

Граничные условия

(xp,yp) = p, |внеш. граница = 0, f|внеш. граница = (n/)(m/(2kT))3/2exp[-m{(vx + V)2 + vy2}/(2kT)]. (12)

Система (7)(12) составляет математическую модель для тела ленточной геометрии, расположенного на большой обтекаемой бесстолкновительной плазмой пластине.

Система (16) и (712) приводились к безразмерному виду с помощью следующей системы масштабов:

ML = rd = (okTi/ne2)1/2 - масштаб длины; M = kTi/e - масштаб потенциала; MV = (2kT/m)1/2, = i,e - масштаб скорости. (13)


Pages:   || 2 | 3 | 4 | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.