авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |   ...   | 7 |

Деформирование и разрушение неоднородных материалов и конструкций при ударе и взрыве

-- [ Страница 1 ] --

На правах рукописи

Глазырин Виктор Парфирьевич

деформирование и разрушение неоднородных материалов и конструкций при ударе и взрыве

Специальность

01.02.04 – механика деформируемого твердого тела

Автореферат

диссертации на соискание ученой степени

доктора физико-математических наук

Томск - 2008

Работа выполнена в ОСП «НИИ прикладной математики и механики Томского государственного университета» и кафедре механики деформируемого твердого тела ГОУ ВПО «Томский государственный университет».

Научный консультант:

доктор физико-математических наук, профессор

Скрипняк Владимир Альбертович

Официальные оппоненты:

доктор физико-математических наук профессор, член-корр. РАН

Аннин Борис Дмитриевич

доктор физико-математических наук, профессор

Кульков Сергей Николаевич

доктор физико-математических наук, профессор

Черепанов Олег Иванович

Ведущая организация: ФГУП «ФНПЦ «Алтай», г. Бийск

Защита состоится « 26 » декабря 2008 г. в часов на заседании диссертационного совета Д 212.267.13 по защите диссертаций на соискание ученой степени доктора наук при Томском государственном университете по адресу: 634050, г. Томск, пр. Ленина, 36.

С диссертацией можно ознакомиться в Научной библиотеке Томского государственного университета.

Автореферат разослан «____ » __________ 2008 г.

Ученый секретарь диссертационного

совета,

доктор технических наук, ст.н.с Христенко Ю.Ф.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Процессы, протекающие в твердых телах при высокоскоростном взаимодействии, в настоящее время являются предметом фундаментальных и прикладных исследований, как в России, так и за рубежом. Это обусловлено, прежде всего, широтой использования получаемых результатов в различных сферах жизнедеятельности человека. Сюда можно отнести: создание эффективных противоударных защит гражданских и военных объектов и техники; сварку и резание взрывом; гидроштамповку; ударноволновое прессование; взрывное упрочнение; безопасность оболочек ядерного реактора в случаях попадания в них предметов извне (летательных аппаратов, осколков и пр.) или нагружения изнутри (чрезмерно высокие давления, возникающие при нарушении работы реактора) и т.д. Отдельно можно выделить защиту космических аппаратов от угрозы воздействия на них микрометеоритов и частиц техногенного мусора. Кроме этого, накопленный опыт в области высокоскоростного деформирования твердых тел представляет интерес в медицине и астрофизике.

Соударение твердых тел сопровождается сложными процессами, окончательная роль которых определяется наличием ряда факторов: начальной скоростью объектов соударения, их составом, формой и физико-механическими характеристиками (ФМХ). Надо отметить, что в большинстве случаев при соударении имеют место проникание тел друг в друга, а также плавление и разрушение материала на отдельные фрагменты.

При количественном описании высокоскоростных ударных явлений возникает много сложных проблем, которые в настоящее время далеки от решения и требуют использования теоретических и экспериментальных методов исследования. Определенные результаты можно получить посредством проведения широкомасштабных модельных и натурных экспериментов при помощи различных баллистических установок и взрывных ускорителей для метания тел. В ходе опытов устанавливаются необходимые зависимости и характеристики. Например, размер осколка, степень его разрушения, форма и глубина кратера, предельная толщина пробития и т.д. Однако необходимо отметить техническую сложность и дороговизну проведения таких опытов, а также невозможность получения подробной информации о пространственно-временном распределении полей напряжений, деформаций и областей разрушений. Тем не менее, важность получения экспериментальных результатов сомнений не вызывает.





Результатам экспериментальных исследований процессов высокоскоростного деформирования материалов посвящены работы Л.В. Альтшулера, А.А. Бакановой, Ф.А. Баума, М.И. Бражника, П. Бриджмена, Б.Л. Глушака, Д. Греди, Л. Грина, А.А. Дерибаса, А.Н. Дремина, Е.И. Забабахина, Я.Б. Зельдовича, Н.А. Златина, А.Г.Иванова, Г.И. Канеля, С.Б. Кормера, В.А. Григоряна, Р. Кинслоу, К.И. Козорезова, А.А. Коняева, А.М. Брагова, С. Марша, Р. Мак-Куина, Ю.И. Мещерякова, Л. Мурра, С.А. Новикова, М.В. Синицына, К.П. Станюковича, Г.В. Степанова, Э.С. Степанова, В.А. Одинцова, Т.М. Платовой, Г.С. Пугачева, С.В. Разоренова, В.И. Романченко, В.М. Титова, В.Ф. Толкачева, Р.Ф. Трунина, Д. Уолша, А.В. Уткина, В.Е. Фортова, И.Е. Хорева, П. Хоува и др.

В роли другого инструмента исследований выступают приближенные аналитические или инженерные методы. При разработке таких методов акцентируют внимание на одном из аспектов задачи (например, образование пробки, лепестков и т.п.) Затем вводят упрощающие допущения, которые облегчают решение основных уравнений механики сплошной среды, сводя их к одномерныи или двумерным по пространственным переменным дифференциальным уравнениям. Такой подход является простым и незаменимым при проведении экспресс-анализа процесса, однако он ограничен узким диапазоном начальных данных и сделанными предположениями.

Наиболее эффективный и информативный способ моделирования высокоскоростного соударения твердых тел базируется на решении основной системы уравнений механики деформируемого твердого тела. Как правило, для задач удара такая система уравнений с определяющими соотношениями, граничными и начальными условиями не имеет аналитического решения. Для ее решения используют численные методы. Современные методы конечных разностей обладают большой гибкостью и позволяют моделировать движение среды с разрывами, с контактными и свободными поверхностями. По-существу, они также являются приближенными, так как решаются системы конечно-разностных уравнений, а не сами дифференциальные уравнения. При помощи численных методов можно проследить по времени весь процесс динамического деформирования твердых тел. В ходе численного эксперимента можно определить место и время образования очагов разрушений, их характер и эволюцию. Важным достоинством данного подхода является возможность получения полной информации о текущем значении выбранного параметра в каждой точке исследуемого тела, что, в свою очередь, позволяет выяснить механизмы и основные закономерности процесса. Результаты численного моделирования можно использовать как для оценки существующих, так и разработки новых инженерных методик расчета.

Численные исследования процессов, протекающих в твердых телах при ударном и взрывном воздействии, проводились различными группами ученых и связаны с именами: Н.Х. Ахмадеева, В.В. Башурова, Н.Н. Белова, А.В. Герасимова, А.И. Глушко, С.К. Годунова, В.А. Гридневой, А.И. Гулидова, А.В. Жукова, В.Л. Загускина, С.А. Зелепугина, С.П. Киселева, А.И. Корнеева, А.В. Кочеткова, Д. Куррана, М.К. Кэрролла, В.Ф. Куропатенко, Б.А. Люкшина, Е. Ли, П.В. Макарова, Л.А. Мержиевского, Н.Ф. Морозова, Р.И. Нигматулина, В.С. Никифоровского, Т.М. Платовой, Н.Н. Пилюгина, А.В. Радченко, А.И. Рузанова, А.И. Садырина, Г.А., Сапожникова, В.А. Скрипняка, Ю.П. Стефанова, В.Г. Трушкова, В.М.Фомина, Н.Н. Холина, В. Херрманна, Т. Югова, Н.Н. Яненко, а также M.L. Wilkins, R.J. Von Neumann, R.D. Richtmyer, G.R. Johnson, J.N. Johnson, R.A.Stryke, R.W. MacCormack, O. Neimark, F. Collombet, R.A. Gingold, P.D. Lax, B. Wendroff и др.

Высокоскоростное деформирование тел зачастую сопровождается их разрушением. Теория разрушения твердых тел включает в себя ряд комплексных проблем, находящихся на стыке физики твердого тела, материаловедения и механики сплошной среды. Экспериментальная информация о развитии разрушения носит косвенный характер, поскольку на современном этапе развития методов измерения принципиально невозможно полностью проследить эволюцию параметров материала непосредственно в зоне разрушения, не исказив исследуемый процесс. В условиях ударного или взрывного нагружения о характере и параметрах разрушения судят по экспериментально фиксируемой скорости свободной поверхности нагружаемого образца или по результатам металлографического анализа испытуемых образцов.

В последнее время для описания разрушения получил развитие подход, основанный на выделении поверхностей разрыва сплошности материалов, который, так или иначе, связан с модификацией первоначальной расчетной сетки, т.е. с формированием новой свободной поверхности. В этом направлении можно отметить несколько предложенных численных методов. Одни методы основаны на локальной перестройке сетки в области разрушения, другие - на расщеплении расчетных узлов в предположении заранее известной свободной поверхности (т.е. введение линии сдвоенных узлов), третьи - на расщеплении узлов с автоматической перестройкой свободной поверхности с введением дополнительных узлов. Данные методы применялись для решения модельных задач с простой компоновкой и геометрией взаимодействующих тел и, естественно, они мало пригодны для моделирования перспективных ударостойких защит, которые, как правило, являются структурно-неоднородными, а именно, многослойными, наполненными высокопрочной керамикой, армированные вольфрамом или ураном и т.д. Современные высокоэффективные поражающие элементы также представляют из себя неоднородные конструкции сложной формы.

Таким образом, актуальность темы исследований обусловлена тем, что в настоящее время существует потребность в создании численного метода и соответствующего программного комплекса, позволяющего моделировать высокоскоростное деформирование и фрагментарное разрушение материала. Другими словами, в методе расчете должна быть заложена возможность выделения поверхностей разрыва сплошности материала, а также возможность отслеживать контактные и свободные поверхности, как имеющиеся в начальный момент времени, так и образующиеся в процессе деформирования и разрушения. Выполнение этих условий имеет особое значение при решении многоконтактных динамических задач механики твердого тела.

Целью диссертационной работы является разработка средств математического моделирования и проведение с их помощью численных исследований по выяснению механизмов и основных закономерностей процессов деформирования и разрушения неоднородных материалов и конструкций при ударном и взрывном нагружении в широком диапазоне начальных условий.

Научная новизна работы заключается в том, что на основе предложенного подхода разработана новая модификация метода численного моделирования процессов высокоскоростного деформирования и разрушения твердых тел, явно учитывающая фрагментацию и позволяющая моделировать нагружение структурно-неоднородных материалов. Получены новые результаты при решении ряда многоконтактных задач удара и взрыва.

Практическая значимость работы. Созданные средства математического моделирования могут быть полезны при проведении фундаментальных и прикладных исследований. В плане фундаментальных НИР использование предложенного подхода позволяет выяснять механизмы и закономерности процесса высокоскоростного деформирования и разрушения конструкционных материалов и, кроме того, получать результаты в недоступной для эксперимента области начальных условий. В плане прикладных исследований (НИОКР), а также при проведении комплексного рационального проектирования реализуется возможность прогнозировать поведение перспективных ударостойких защит гражданских и военных объектов и техники для облегчения поиска оптимального варианта, как защитной конструкции, так и поражающего элемента. Полученные результаты численных исследований по пробитию преград комбинированными ударниками, по ударному нагружению слоисто-скрепленных и градиентных преград имеют особую значимость при выработке практических рекомендаций по поиску путей повышения ударной стойкости защит и эффективности действия поражающих элементов. Результаты решения задач о взрывном нагружении льда могут использоваться как в военных, так и в гражданских целях.

Результаты работы нашли свое отражение более чем в ста отчетах по важнейшим НИР, заказчиками которых выступали центральные НИИ и КБ ведущих отраслей промышленности. Это ЦНИИХМ, НПО «Алтай», НПО «Союз», ВНИИСтали, ЦНИИ им. акад. А.Н.Крылова, ЦНИИТочМаш, ФГУП НПО «Астрофизика», НТК Сухопутных войск МО, СПП при президиуме РАН и др.

Диссертационная работа выполнялась при финансировании по программе Минобразования РФ «Развитие научного потенциала высшей школы (2006-2008 годы)», проект РНП 2.1.2.2398 и поддержке грантов РФФИ (проекты № 05-08-01196, № 06-08-00903 и № 07-08-00623).

Достоверность результатов численного моделирования подтверждена и установлена корректностью физико-математической постановки и решением ряда тестовых задач, результаты которых сравнивались с аналитическим решением Ренкина – Гюгонио и экспериментальными данными. Рассмотрены задачи об ударе цилиндра по жесткой стенке, о пробитии ударником однородных и слоисто-разнесенных преград и о глубоком внедрении удлиненных ударников различной формы в полубесконечные преграды.

Совокупность полученных в работе результатов можно квалифицировать как новое крупное научное достижение в развитии математического моделирования процессов деформирования и разрушения неоднородных материалов и конструкций при ударе и взрыве.

Положения, выносимые на защиту:

1. Подход к описанию разрушения материала при ударе и взрыве, учитывающий образование новых контактных и свободных поверхностей.

2. Математическая модель высокоскоростного деформирования неоднородных материалов, учитывающая релаксацию сдвиговых напряжений, а также фрагментарное разрушение отрывного и сдвигового характера.

3. Модификация лагранжевого метода, в явном виде учитывающая фрагментарное разрушение материалов по отрывному и сдвиговому типу при ударном и взрывном нагружении.

4. Методика компьютерного моделирования и программный комплекс, позволяющие исследовать процессы высокоскоростного деформирования и разрушения материалов, в том числе глубокого внедрения ударников и сквозного пробития преград с возможностью выделения поверхностей разрыва сплошности материала.

5. Результаты численных исследований динамики пробития преград комбинированными ударниками различной формы и компоновки, в том числе наполненными ВВ.

6. Результаты численных исследований процесса взаимодействия компактных и удлиненных ударников со слоисто-скрепленными и функционально-градиентными преградами.

7. Результаты исследований динамики поведения льда при ударном и взрывном нагружении.

Личное участие автора в получении результатов заключается в разработке подхода к описанию разрушения материала при ударе и взрыве, математической модели высокоскоростного деформирования материалов, модификации лагранжевого метода для решения многоконтактных задач удара, алгоритмов и методик, а также в постановке задач, в проведении расчетов и анализе результатов.

Апробация работы: Основные результаты диссертационной работы докладывались и обсуждались на следующих научных конференциях:



Pages:   || 2 | 3 | 4 | 5 |   ...   | 7 |
 



Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.