авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Разработка методов повышения ресурса шестеренных насосов гидротопливных систем

-- [ Страница 1 ] --

На правах рукописи

АИСТОВ Игорь Петрович





РАЗРАБОТКА МЕТОДОВ ПОВЫШЕНИЯ РЕСУРСА

ШЕСТЕРЕННЫХ НАСОСОВ ГИДРОТОПЛИВНЫХ СИСТЕМ


Специальность 05.02.02 Машиноведение, системы приводов

и детали машин

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Братск – 2009

Работа выполнена на ОАО «ОМСКАГРЕГАТ» (г. Омск)

и в Омском государственном техническом университете

Научный консультант: доктор технических наук, профессор

Штриплинг Лев Оттович

Официальные оппоненты: Заслуженный деятель науки РФ,

доктор технических наук, профессор

Беляев Арнольд Ефроимович

доктор технических наук, профессор

Каверзин Сергей Викторович

доктор технических наук, профессор

Огар Петр Михайлович

Ведущая организация: ГОУ ВПО «Сибирский государственный

аэрокосмический университет»

им. М.Ф. Решетнева, г. Красноярск.

Защита состоится «25» июня 2009 г. в ___00 часов на заседании диссертационного совета Д 212.018.02 в Братском государственном университете по адресу: г. Братск, ул. Макаренко 40, ауд. _____.

С диссертацией можно ознакомиться в библиотеке Братского государственного университета.

Отзывы на автореферат в двух экземплярах, заверенные печатью организации, просим направлять по адресу: 665709, Российская Федерация, Иркутская область, г. Братск, ул. Макаренко 40, Братский государственный университет (БрГУ), диссертационный совет Д 212.018.02, ученому секретарю (тел./факс 8-(3953)-33-20-08).

Автореферат разослан «___» ___________ 2009 г.

Ученый секретарь диссертационного

совета Д 212.018.02, к.т.н., доцент И.М. Ефремов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В настоящее время методы расчета нагруженного состояния деталей и узлов различного назначения разработаны достаточно глубоко и подкреплены широкой номенклатурой нормативно-технической документации, в том числе: ГОСТами, отраслевыми стандартами, методиками, и т.д., позволяющие устанавливать необходимый срок службы для большинства агрегатов и механизмов, содержащие типовые детали машин: валы, шестерни, подшипниковые опоры, узлы трения и т.д.

Однако практика эксплуатации отдельных агрегатов, например, шестеренных насосов авиационного назначения, показывает, что существующие методы расчетов не обеспечивают расчетную долговечность составляющих деталей и вынуждает устанавливать назначенный ресурс насоса в 3-4 раза ниже возможной величины, при этом разброс наработки до отказа достигает до 8–10 раз. Принимая, что для шестеренных насосов гидротопливных систем характерны: отлаженная технология изготовления составляющих деталей, когда их поэлементный контроль удовлетворяют необходимым требованиям; приемо-сдаточные испытания в собранном виде показывает соответствие выходным паспортным характеристикам; они эксплуатируются в сопоставимых условиях; – тогда, основной причиной преждевременных отказов является фактическое нагруженное состояние деталей машин насоса, которое, главным образом, зависит от особенностей конструкции, условий работы и реального взаимного положения составляющих насос деталей в собранном виде, т.е. сочетания их погрешностей изготовления и монтажа. Причем, варианты сборок насосов, имеющие предпосылки преждевременных отказов, как правило, успешно проходят приемо-сдаточные испытания. Следовательно, установление причин появления нагрузок, приводящие к преждевременному выходу из строя шестеренных насосов, и разработка системы контроля и диагностики агрегатов на стадии производства, позволяющая выявлять варианты сборок, имеющие предпосылки преждевременных отказов, являются актуальными задачами.



В связи с вышеизложенным, научной проблемой, требующей своего разрешения, является установление причин появления нагрузок, не закладываемые в существующие методики расчетов, на детали шестеренных насосов с учетом особенностей их конструкции, условий работы и погрешностей их изготовления и монтажа.

Целью настоящего исследования является повышение достоверности расчетов нагруженного состояния деталей и узлов шестеренных насосов с учетом их фактического взаимного положения в собранном виде, особенностей конструкции и условий работы насоса, а также разработка системы контроля и диагностики текущего состояния шестеренных насосов гидротопливных систем на стадии производства, позволяющая выявлять варианты сборок, имеющие предпосылки преждевременных отказов.

Задачами исследования являются:

1) Выявить закономерности, влияющие на фактическое взаимное положение деталей и узлов шестеренных насосов в собранном виде.

2) Выявить закономерности силового взаимодействия деталей и узлов шестеренных насосов с учетом их фактического положения в собранном виде.

3) Выявить влияние особенностей конструкции и условий работы шестеренных насосов на нагруженное состояние его деталей и узлов.

4) Провести анализ влияния фактического нагруженного состояния составляющих деталей и узлов шестеренных насосов на их ресурс.

5) Экспериментально подтвердить основные теоретические положения, представленные в работе.

6) Разработать систему контроля и диагностики шестеренных насосов на стадии производства, позволяющая выявлять варианты их сборок, имеющие предпосылки преждевременных отказов.

В качестве объекта исследования рассматриваются шестеренные насосы системы топливопитания авиационных двигателей.

Методы исследования. Теоретическая часть работы базируется на применении векторно-вероятностных методов представления погрешностей изготовления и монтажа деталей машин, теории вероятностей, теории упругости, теории колебаний, теории надежности, трибологиии и методах математического моделирования. В экспериментальной части работы использовались методы кинематометрирования, виброметрии, спектрального анализа, теории планирования эксперимента и обработки экспериментальных данных.

Достоверность результатов. Достоверность полученных в работе результатов обусловлена корректным использованием фундаментальных положений математики и механики, подтверждена удовлетворительным совпадением результатов теоретических исследований с экспериментальными данными.

Основные положения, выносимые на защиту:

1) Математические модели, описывающие закономерности взаимного положения деталей и узлов и их влияние на силовое взаимодействие в шестеренных насосах гидротопливных систем.

2) Диагностическая модель технического состояния шестеренных насосов, учитывающая особенности его конструкции и работы.

3) Комплекс экспериментальных методов и исследований, обеспечивающих оценку текущего технического состояния шестеренных насосов на основе метода виброметрии корпуса и метода контроля потребляемой мощности приводного электродвигателя испытуемых агрегатов.

4) Алгоритм формирования назначенного ресурса агрегатов на примере шестеренных насосов систем топливопитания авиационных двигателей.

Научная новизна работы заключается:

1. На основе детерминированного и вероятностного подходов, выявлены закономерности взаимного положения и силового взаимодействия деталей и узлов шестеренных насосов авиационного назначения, которые позволили оценить их фактическое нагруженное состояние в собранном виде.

2. Предложен общий алгоритм оценки фактического нагруженного состояния деталей шестеренных насосов с учетом погрешностей изготовления и реального взаимного положения в собранном виде, который позволяет целенаправленно подойти к формированию для них назначенного ресурса.

3. Проведен теоретический анализ работы цилиндрической зубчатой передачи при коэффициенте перекрытия менее единицы, который позволил предварительно количественно оценить нагрузки на зубья шестерен насоса для конкретных вариантов сборок шестеренных насосов.

4. Проведен анализ условий работы и оценка долговечности пары трения "торцы зубьев шестерен – подпятник" с учетом фактического взаимного положения основных деталей и узлов шестеренных насосов авиационного назначения, который позволил количественно оценить увеличение момента сил трения в паре трения «торцы зубьев шестерен – подпятник» и интенсивность её износа.

5. Выявлены сочетания вариантов сборок и режимов работы шестеренного насоса, при которых работа разгрузочных канавок становится неэффективной, и проведена количественная оценка увеличения радиальной нагрузки на подшипниковые опоры насоса.

6. Разработана диагностическая модель технического состояния шестеренных насосов, которая отражает условия появления у них основных отказов, и позволяющая учитывать погрешности изготовления, монтажа и фактического взаимного положения деталей в собранном виде, а также условия работы шестеренных насосов при различных режимах.

7. Обоснованы основные принципы формирования ресурса агрегатов, которые позволили увеличить назначенный ресурс шестеренного насоса, на примере насоса системы топливопитания авиационного двигателя.

Практическая значимость работы состоит в том, что: предложены основные принципы и методы расчета нагруженного состояния деталей и узлов шестеренных насосов с учетом погрешностей их изготовления и реального взаимного положения в собранном виде; предложен алгоритм анализа нагруженного состояния шестеренных насосов с учетом взаимного положения составляющих их деталей и узлов в собранном виде, который позволяет целенаправленно подойти к формированию для них назначенного ресурса; теоретические и экспериментальные исследования легли в основу системы контроля и диагностирования шестеренных насосов авиационного назначения, что позволило повысить его назначенный ресурс; результаты работы прошли апробацию и внедрены на ОАО «Омскагрегат» (г. Омск) и могут быть рекомендованы для внедрения на заводах–изготовителях шестеренных насосов во всем диапазоне их типоразмеров и назначения в различных отраслях машиностроения.

Работа выполнялась в соответствии с аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы (2006-2008 года) Федерального агентства по образованию Министерства образования и науки Российской федерации.

Апробация работы. Основные положения работы докладывались на международных и российских конференциях: «Проблемы механики современных машин», Улан-Удэ, 2000; «Динамика машин и рабочих процессов», Челябинск, 2002; «Динамика систем, механизмов и машин», Омск, 2002; «Дорожно-транспортный комплекс, экономика, экология, строительство и архитектура», Омск, 2003; «Развитие оборонно-промышленного комплекса на современном этапе», Омск, 2003; «Дорожно-транспортный комплекс, экономика, экология, строительство и архитектура», Омск, 2003; «Проблемы механики современных машин», Улан-Удэ, 2003; «Управление качеством: теория, методология, практика», Саранск, 2004; «Динамика систем, механизмов и машин», Омск, 2004; «Проблемы механики современных машин», Улан-Удэ, 2006: «Автоматизация и прогрессивные технологии», Новоуральск, 2007: «Сильные инженерные школы – технологический прорыв Сибири», Омск, 2008; на Научном семинаре по трению и износу им. М.М. Хрущева Института машиноведения РАН им. А.А. Благонравова, Москва, 2009.

По теме диссертации опубликовано 27 работы, в том числе 11 публикаций в изданиях, рекомендованных ВАК для докторских диссертаций.

Структура и объем работы. Диссертация состоит из введения, 6 глав, перечня основных результатов и общих выводов, приложения, списка литературы из 194 наименования. Работа изложена на 284 страницах машинописного текста, включая 83 рисунка и 23 таблицы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, изложена цель и задачи исследований, дана общая характеристика работы, приводятся научная новизна полученных результатов и практическая значимость выполненной работы, выделены положения, выносимые на защиту.





В первой главе на основе анализа опубликованных работ, отмечается что для оценки нагруженного состояния деталей и узлов, входящих в состав агрегатов, в основном используют традиционные методы расчетов в детерминированной постановке. Однако, в традиционных методах расчета, как правило, в явном виде не учитываются возможные разбросы расчетных параметров, который всегда имеют место и носят вероятностный характер. Для этого, с целью учета разброса расчетных параметров, оценку нагруженного состояния деталей и узлов агрегатов часто проводят с помощью вероятностного подхода. Также отмечается что, практика эксплуатации авиационных агрегатов показывает, что некоторая их часть не вырабатывает свой назначенный ресурс работы из-за преждевременных отказов составляющих его деталей и узлов. В качестве примера, выбран шестеренный насос системы топливопитания авиационных двигателей (агрегаты 760Б и 4001), который представляет собой прямозубую зубчатую передачу с внешним зацеплением: число зубьев ведущей и ведомой шестерен z1 = z2 = 8; модуль m = 3,5 мм; номинальное межосевое расстояние aw = 31,5 мм. Агрегат обеспечивает подачу топлива с производительностью Qт = 2200 л/час при выходном давлении рн = 6 МПа и скорости вращения привода n = 5000 об/мин. Рабочая жидкость – керосин ТС-1 (ГОСТ 10227–86).

В главе проведен анализ опубликованных работ – выявлено общее состояние вопросов изготовления и сборки шестеренных насосов; рассмотрены общепринятые прочностные расчеты деталей и узлов насоса; проведен анализ существующих исследований, направленных на повышение надежности шестеренных насосов, используемых в гидромеханических системах различного назначения. Показано, что существующие методики прочностных расчетов деталей шестеренных насосов, не могут объяснить причины их преждевременных отказов. Приведена статистика и анализ отказов рассматриваемых агрегатов, возвращенных для ремонта на заводе-изготовителе, общий выпуск которых за период с 1970 по 2005 гг. составил более 30 тысяч штук. Общее количество агрегатов, для которых в главе был проведен анализ на предмет их отказов составило около полутора тысяч штук, что составляет примерно 5-6 % от их общего количества.

В результате, были обозначены основные причины, или, назовем их критические параметры Пi, при которых произошел отказ агрегата по конкретному i-тому критерию (см. таблицу). В нашем случае, это: износ зубьев шестерен насоса вследствие раскрытия контакта их рабочих поверхностей (критический параметр П1, рис. 1); износ подпятника в паре трения «торцы зубья шестерен – подпятник» (критический параметр П2, рис. 2); износ опорных поверхностей шестерен и подшипниковых опор (критический параметр П3, рис. 3); срез или потеря прочности вала ведущей шестерни (критический параметр П4, рис. 4).

В главе рассмотрены публикации, посвященные существующим методам прочностных расчетов деталей машин агрегатов, вопросам вибрации, моделирования, обеспечения ресурса агрегатов как в детерминированной постановке (Айрапетов Э.Л., Генкин М.Д., Биргер И.А., и др.), так и с использованием вероятностного подхода (Проников А.С., Светлицкий В.А., Решетов Д.Н., Иванов А.С., Фадеев В.З. и др.), а также векторно-вероятностным методам представления погрешностей изготовления и монтажа деталей машин (Попов П.К., Шувалов С.А., Штриплинг Л.О. и др.). Особое внимание уделено работам, непосредственно посвященных проблемам проектирования насосов (Башта Т.М., Алексапольский Д.И., Беляев А.Е. и др.) и шестеренных насосов в частности (Юдин Е.М., Рыбкин Е.А., Усов А.А., Осипов А.Ф. и др.), разработке технологических вопросов их изготовления, ремонта и сборки (Тетюхин В.И., Глухов В.И. и др.), конкретным вопросам работы шестеренных насосов авиационного назначения и их диагностики (Шабуров И.В., Шахматов Е.В., Костюков В.Н. и др.), обеспечения ресурса (Барышев В.И, Башуров Б.П. и др.) и т.д. В работе также использованы методики для оценки долговечности пар трения, изложенные в работах Крагельского И.В., Дроздова Ю.Н. и др.

Таблица

Основные виды отказов и их причины для шестеренного насоса

системы топливопитания авиационных двигателей (агрегаты 760Б и 4001)

Вид отказа агрегата Выявленная причина отказов, или критический параметр Пi, влияющий на техническое состояние агрегата

1. Отказ агрегата по дефекту «Колебание давления топлива в двигателе» (доля отказов – 46,7% от общего количества отказов) 2. Отказ агрегата по дефекту «Не запуск двигателя» (доля отказов – 18,3%) 3. Отказ агрегата по дефекту «Наличие стружки в фильтре» (доля отказов – 11,7%) 4. Отказ агрегата по дефекту «Падение оборотов двигателя и его останов» (доля отказов – 15%) Критический параметр П1: Происходит из-за резкого увеличение объемных потерь рабочей жидкости из камеры нагнетания в камеру всасывания насоса через зону зацепления из-за раскрытия контактов рабочих профилей зубьев шестерен. При этом, происходит увеличение динамических нагрузок на зубья шестерен и рост контактных напряжений, ведущий к повышенному износу зубьев шестерен насоса (рис. 1). Критический параметр П2: Происходит из-за роста объемных потерь рабочей жидкости в полостях шестеренного насоса и падения его объемного КПД. При этом, разборка насоса показывает повышенный износ поверхностей торцевых уплотнений подпятников шестеренного насоса (рис. 2). Критический параметр П3: Износ зубьев шестерен (рис. 1), подпятников (рис. 2) и подшипниковых опор (рис. 3). Критический параметр П4: Происходит вследствие среза или потери прочности вала ведущей шестерни, возникающий вследствие заклинивания шестерен в подпятниках насоса (рис. 4).


Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.