авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Методология проектирования малоэмиссионных камер сгорания газотурбинных двигателей на основе математических моделей физико-химических процессов

-- [ Страница 1 ] --

На правах рукописи

Куценко Юрий Геннадьевич

МЕТОДОЛОГИЯ ПРОЕКТИРОВАНИЯ

МАЛОЭМИССИОННЫХ КАМЕР СГОРАНИЯ

ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ НА ОСНОВЕ

МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕССОВ

Специальность 05.07.05 – Тепловые двигатели летательных аппаратов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Пермь – 2010

Работа выполнена в ОАО «Авиадвигатель»

Научный руководитель: д.т.н., профессор Августинович В.Г.

Официальные оппоненты: д.т.н., профессор Мингазов Б.Г.

д.т.н., профессор Рутовский В.Б.

д.т.н., профессор, Амарантов Г.Н.

Ведущая организация: ОАО «Самарский научно-технический

комплекс им. Н.Д. Кузнецова»

Защита состоится “15” ноября 2010 г. в 14 часов на заседании диссертационного совета Д 212.188.06 в Пермском государственном техническом университете (614000, г. Пермь, Комсомольский проспект, 23, ауд. 423).

С диссертацией можно ознакомиться в библиотеке Пермского государственного технического университета

Автореферат разослан «__» _____ 2010 г.

Ученый секретарь

диссертационного совета

доктор технических наук,

профессор В.И. Свирщев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Главной проблемой создания малоэмиссионных (с низким содержанием оксидов азота в выхлопных газах) камер сгорания ГТД является обеспечение их надежной и эффективной работы в составе энергетических установок. Для снижения уровня эмиссии оксида азота камерами сгорания ГТД отечественными и зарубежными разработчиками применяются четыре основные технологии организации малоэмиссионного горения:

  1. «Богато-бедное» горение;
  2. Сжигание «бедной» гомогенной топливо-воздушной смеси;
  3. «Мокрые» методы снижения NOx – подача в камеру сгорания топлива или окислителя, смешанного с водяным паром ;
  4. Сжигание низкокалорийного топлива – синтез-газа, полученного путем каталитического разложения природного газа.

Само по себе достижение низкого уровня эмиссии оксидов азота может быть получено «обеднением» топливовоздушной смеси или снижением температуры пламени. Но необходимость одновременного выполнения эксплуатационных и энергетических требований существенно усложняет эту задачу, так как любая технология снижения эмиссии оксидов азота сопровождается снижением надежности системы в целом. Например, к числу важнейших недопустимых явлений, сопровождающих процессы в малоэмиссионных камерах сгорания с «бедным» фронтом (генеральное направление в мире) и являющихся их постоянными «спутниками», относятся низкая полнота сгорания, термоакустические пульсации, «бедный» срыв пламени и проскок пламени в зону подготовки топливовоздушной смеси. Чтобы спроектировать современную малоэмиссионную камеру сгорания, необходимо пройти по узкой грани между выполнением требований по уровню эмиссии оксидов азота и запасами по отношению к вышеперечисленным явлениям, то есть знать или оценивать величину диапазона по составу смеси. Следовательно, при проведении расчетно-экспериментальных работ по проектированию малоэмиссионной камеры сгорания возникает потребность в оценке следующих ее важнейших характеристик:



  1. Уровня эмиссии загрязняющих веществ: NOx, CO;
  2. Полноты сгорания топлива;
  3. Пределов стабилизации пламени в гомогенной и диффузионной зонах горения.

Для проектирования малоэмиссионных камер сгорания газотурбинных двигателей необходима разработка методологии проектирования на основе математических моделей физико-химических процессов. При создании методологии проектирования в первую очередь необходимо:

  1. Уточнить существующие математические модели для расчета уровня эмиссии оксида азота;
  2. Разработать математическую модель для расчета уровня эмиссии оксида углерода;
  3. Разработать математическую модель для оценки пределов стабилизации фронта пламени.

Успешное решение этих проблем позволит перейти к нахождению параметрического компромисса, то есть собственно и определить основные проектные параметры надежно работающей малоэмиссионной камеры сгорания в зависимости от конкретных условий, в том числе с учетом геометрических (конструктивных) ограничений. Или, иначе, разработать методологию проектирования реальных малоэмиссионных камер сгорания газотурбинных двигателей.

Однако, на пути к решению поставленной задачи необходимо не только выбрать (то есть идентифицировать с экспериментом) модели турбулентности и кинетических механизмов окисления углеводородного топлива из уже имеющегося набора, но и, что значительно сложнее, разработать способ пространственной идентификации типов пламени (гомогенное и диффузионное) в трехмерном реагирующем пространстве сильно закрученного потока, обладающего свойствами нелинейности, если говорить о его математическом описании. Необходимость этой идентификации обусловлена тем обстоятельством, что в настоящее время отсутсвуют математические модели смешанного фронта пламени (диффузионного и гомогенного). А реальный фронт пламени в современной камере сгорания, как правило, смешанный.

Как уже отмечалось, невозможно спроектировать малоэмиссионную камеру сгорания без оценок запасов по стабилизации фронта пламени и концентрации оксида углерода. Если в оценке оксидов азота с помощью математических моделей в мире наработан большой опыт, то в части моделирования бедного срыва и, соответственно, розжига камер сгорания ситуация значительно хуже. Доступные в настоящее время математические модели горения не могут предоставить возможность для выполнения комплексного расчета основных характеристик проектируемой камеры сгорания.

Таким образом, создание методологии проектирования на основе математических моделей физико-химических процессов и ее применение для выбора технологий малоэмиссионного горения являются актуальными задачами, имеющими важное научное и практическое значение.

Цель работы состоит в создании методологии проектирования малоэмиссионных камер сгорания газотурбинных двигателей на основе математических моделей физико-химических процессов и ее применении для анализа и выбора технологий малоэмиссионного горения.

Задачи исследования:

  1. Создание методологии проектирования малоэмиссионных камер сгорания газотурбинных двигателей на основе математических моделей физико-химических процессов;
  2. Настройка математической модели для расчета уровня эмиссии оксида азота;
  3. Разработка математической модели для расчета уровня эмиссии оксида углерода;
  4. Разработка математической модели для описания процесса дестабилизации гомогенного и диффузионного фронтов пламени;
  5. Проведение моделирования физико-химических процессов в камере сгорания и оценка их влияния на уровень эмиссии оксида азота;
  6. Проведение сравнительного анализа конструктивных схем камер сгорания ГТД, в которых реализованы технологии малоэмиссионного сжигания топлива с использованием разработанной методологии.

На защиту выносятся:

  1. Разработанная методология математического моделирования физико-химических процессов в камере сгорания ГТД для оценки уровня эмиссии оксида азота, оксида углерода и пределов стабилизации фронта пламени;
  2. Результаты численного исследования взаимного влияния физико-химических процессов в камере сгорания и оценка их влияния на расчетный уровень эмиссии оксида азота;
  3. Разработанные «гибридные» модели турбулентного горения, позволяющие оценить уровень эмиссии оксида углерода, оксида азота;
  4. Разработанные «комбинированные» модели турбулентного горения, описывающие структуру фронта пламени и позволяющие смоделировать процесс дестабилизации гомогенного и диффузионного фронтов пламени, оценить уровни эмиссии оксидов углерода и азота, полноту сгорания топливовоздушной смеси.
  5. Результаты сравнительного анализа конструктивных схем камер сгорания ГТД, в которых реализована технология малоэмиссионного горения.

Научная новизна:

  1. Уточнена математическая модель генерации оксидов азота при диффузионном горении углеводородного топлива с учетом радиационного излучения пламени, являющегося существенным фактором при оценке эмиссии.
  2. Впервые разработана математическая модель описания генерации оксидов азота для смешанных (диффузионного и гомогенного) фронтов пламени в камере сгорания.
  3. Создана «гибридная» математическая модель для расчета уровня эмиссии оксида углерода при сгорании углеводородного топлива.
  4. Впервые разработана «комбинированная» математическая модель «бедного» срыва фронта пламени и розжига камеры сгорания в нестационарной постановке. На ее основе сформирована математическая модель для расчета полноты сгорания топлива, являющейся одним из основных проектных параметров камеры сгорания.

Достоверность:

  1. Разработанные и уточненные математические модели физических процессов горения в камерах сгорания газотурбинных двигателей идентифицированы по экспериментальным данным модельных и натурных экспериментов камер сгорания различных типов в части интегральных оценок эмиссии и границы срыва пламени.
  2. Применяемые в расчетах математические модели турбулентности для описания сильно закрученных трехмерных течений в камерах сгорания идентифицированы по имеющимся экспериментальным данным распределений компонент скорости (дифференциальная оценка).

Практическая ценность работы состоит в следующем:

  1. Разработанная методология позволяет учесть при проектировании камер сгорания процессы, происходящие при горении топлива, оценить эмиссионные характеристики, пределы стабилизации фронта пламени и совершенствовать конструкцию камер сгорания еще на ранних стадиях проектирования;
  2. Результаты проведенного в работе сравнительного анализа технологий малоэмиссиионного сжигания топлива использованы для выработки практических рекомендаций по выбору конструктивных схем камер сгорания.
  3. Созданы программы, применяющиеся для:
    1. расчета уровня эмиссии оксида углерода на основе предложенной двухзонной модели турбулентного горения;
    2. расчета скорости распространения фронта пламени;
    3. расчета радиационных свойств среды;
    4. моделирования процесса сажеобразования;
    5. расчета концентраций компонентов топливо-воздушной смеси в зависимости от массовой доли восстановленного топлива и характеристик турбулентности.

Внедрение результатов. Разработанная методология проектирования камер сгорания ГТД на основе математических моделей физико-химических процессов и созданный комплекс программ применяются в ОАО «Авиадвигатель» для выбора и совершенствования конструкций малоэмиссионных камер сгорания.

Публикации. Основные результаты диссертации изложены в 32 печатных работах, из них 1 монография и 7 статей в журналах, рекомендованных ВАК.

Апробация работы

Материалы диссертации были представлены и обсуждены на: IV всероссийской научно-технической конференции «Процессы горения, теплообмена и экология тепловых двигателей» (СГАУ, г. Самара, 9-10 октября 2002 г.); V всероссийской научно-технической конференции «Процессы горения, теплообмена и экология тепловых двигателей» (СГАУ, г. Самара, 5-7 октября 2004 г.); 49-й научно-технической сессии по проблемам газовых турбин (г. Москва, 10-12 сентября 2002 г); 50-й научно-технической сессии по проблемам газовых турбин (г. Санкт-Петербург, 17-18 июня 2003 г); 49-й международной конференции ASME Turbo Expo 2004 (Австрия, г.Вена, 14-16 июня 2004 г); I научно-техническом семинаре по проблемам низкоэмиссионных камер сгорания ГТУ (ЦИАМ, г. Москва, 14-16 декабря 2004 г.); Международной научно-технической конференции «Рабочие процессы и технология двигателей» (КГТУ, г. Казань, 23-27 мая 2005 г); II международной научно-технической конференции «Авиадвигатели XXI века» (г. Москва, ЦИАМ 6-9 декабря 2005 г); 51-й международной конференции ASME Turbo Expo 2006 (Испания, г. Барселона, 7-11 мая 2006 г); Международной научно-технической конференции «Проблемы и перспективы развития двигателестроения» (г. Самара, СГАУ, 21-23 июня 2006 г.); VI всероссийской научно-технической конференции «Процессы горения, теплообмена и экология тепловых двигателей» (СГАУ, г. Самара, 10-11 октября 2007 г.); 53-й международной конференции ASME Turbo Expo 2008 (Германия, г. Берлин, 9-13 июня 2008 г).





СОДЕРЖАНИЕ РАБОТЫ

Во введении сформулирована концепция и основные положения диссертационной работы.

Первая глава посвящена обзору технологий малоэмиссионного горения, применяемых для снижения уровня выбросов оксида азота газотурбинными двигателями. Приводятся международные нормы выбросов вредных веществ для гражданской авиации, установленные Международной Организацией Гражданской Авиации (ICAO) и действующие с 2004 года. Также приводятся нормы выбросов загрязняющих атмосферу веществ для наземных газотурбинных установок (ГТУ), которые определяются заказчиком и различаются для ГТУ, применяемых в энергетике и для перекачки газа. Нормируются выбросы следующих веществ: NOx (NO, NO2 ), угарного газа CO и несгоревших углеводородов UHC.

Рассмотрены основные факторы, влияющие на образование оксида азота в камерах сгорания и методы снижения уровня эмиссии. Отмечается, что скорость образования NO изменяется экспоненциально с изменением температуры пламени, поэтому ключевой момент в уменьшении концентрации NOx – уменьшение температуры пламени. Физико-химические процессы, приводящие к образованию NOx обуславливают следующие практические методы для снижения выбросов NOx в камерах сгорания ГТД:

  1. Создание «бедной» первичной зоны – добавление воздуха в первичную зону для снижения температуры пламени обеспечивает значительное уменьшение выхода NOx.
  2. Создание «богатой» первичной зоны – избыток топлива, так же как и избыток воздуха снижает температуру пламени и, следовательно, выход NOx.
  3. Гомогенизация горения. Улучшение перемешивания топлива и воздуха посредством лучшего распыливания и распределения топлива и увеличения перепада давления на жаровой трубе сделало бы более равномерной температуру пламени в зоне горения.
  4. Уменьшенное время пребывания. Выброс NOx может быть снижен, если уменьшить время, в течение которого газ находится при высокой температуре.

Применение этих методов на практике приводит к следующим технологиям снижения уровня эмиссии NOx:

  1. сжигание обедненных предварительно перемешанных топливовоздушных смесей (схема сжигания LPP –Lean Premixed Prevaporized);
  2. сжигание по схеме «богатое горение - разбавление – бедное горение» (схема сжигания RQL – Rich /Quench/ Lean);
  3. впрыск в камеру сгорания воды или пара;
  4. применение каталитических нейтрализаторов для очистки выхлопных газов;
  5. каталитическое горение.

Вторая глава посвящена математическим моделям, применяемым для моделирования физико-химических процессов в камерах сгорания газотурбинных двигателей. Приведена следующая классификация физико-химических процессов:

  1. Турбулентное течение смеси газов.
  2. Распространение и испарение капель топлива.
  3. Турбулентное горение газообразного топлива.
  4. Образование NOx.
  5. Сажеобразование.
  6. Радиационный теплообмен.
  7. Конвективный теплообмен.
  8. Теплообмен внутри стенок жаровой трубы.

Отмечается, что процессы, происходящие в камерах сгорания, не протекают отдельно, а взаимодействуют друг с другом. Поэтому для проведения расчетов, достаточно точно описывающих физику явлений, происходящих в камерах сгорания ГТД, необходимо моделировать все упомянутые выше процессы и взаимодействие между ними. Для полного описания физико-химических процессов, происходящих в камере сгорания, ГТД должны быть использованы следующие математические модели:

  1. Модель турбулентного течения смеси газов.
  2. Модель распространения и испарения капель топлива.
  3. Модель турбулентного горения газообразного топлива.
  4. Модель образования NOx.
  5. Модель радиационного теплообмена в излучающей среде.
  6. Модель радиационного теплообмена между поверхностями (в отсутствии излучающей среды).
  7. Модель для расчета конвективных тепловых потоков.
  8. Модель процесса теплопроводности.
  9. Модель процесса сажеобразования.

Разработка и настройка перечисленных выше моделей является очень большой по объему работой, сопряженной с определенными трудностями теоретического и экспериментального характера.

Далее в разделе 2.3 рассматриваются математические модели, применяемые для моделирования турбулентного течения газа камерах сгорания:

  1. Уравнения Навье-Стокса;
  2. Модели турбулентности, необходимые для замыкания системы уравнений Навье-Стокса при осреднении ее по Фавру, основанные на гипотезе о турбулентной вязкости Буссинеска: k-, k- RNG, k- ASM, k-, k- SST, k- RSM. Также была использована модель рейнольдсовых напряжений k- RSM, не использующая гипотезу о турбулентной вязкости. В рамках этой модели проводится решение уравнения переноса для неизвестных членов тензора рейнольдсовых напряжений.

Для моделирования теплового состояния стенки жаровой трубы камеры сгорания решается задача совместного теплообмена путем решения уравнений энергии для реагирующего газа и теплопроводности для стенки (раздел 2.4).

Движение капель топлива в потоке газа описывается с использованием лагранжевой модели, описание которой дано в разделе 2.5.

Моделирование процесса окисления топлива (раздел 2.6) проводилось с использованием детальных кинетических механизмов для метана и керосина. Для моделирования процесса окисления метана использовались 3 механизма:

  1. Механизм KEE для окисления метана. 18 компонентов смеси и 58 обратимых реакций;
  2. Механизм SMOOKE, включающий в себя 16 компонентов смеси и 46 реакций;
    1. GRI-MECH 3.0 – 53 компонента смеси и 325 химических реакций.

Для описания процесса горения авиационного керосина использовалась модель суррогатного топлива. Суррогатное топливо состоит из одного или нескольких компонентов, представляющих керосин. В качестве «молекулы» керосина в данной работе применялся C12H23. Кинетический механизм для C12H23 включает в себя две стадии распада топлива и делает акцент на более стабильные промежуточные компоненты второй стадии, в которой реагируют более простые углеводороды:

, , .

На третьей стадии доминируют реакции рекомбинации и превращения СО в СО2. Кинетический механизм состоит из 26 реакций и 18 компонентов смеси, участвующих в этих реакциях.

В качестве альтернативного подхода, для описания горения керосина использовались следующие механизмы окисления n-гептана:



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.