авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   |
|

Исследования в обоснование научно-технических решений конструкции жидкометаллических мишеней ускорительно-управляемых систем


На правах рукописи

Мелузов Александр Георгиевич

ИССЛЕДОВАНИЯ В ОБОСНОВАНИЕ НАУЧНО-ТЕХНИЧЕСКИХ РЕШЕНИЙ КОНСТРУКЦИИ ЖИДКОМЕТАЛЛИЧЕСКИХ

МИШЕНЕЙ УСКОРИТЕЛЬНО-УПРАВЛЯЕМЫХ СИСТЕМ

05.04.11 – Атомное реакторостроение, машины, агрегаты

и технология материалов атомной промышленности

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Нижний Новгород 2007

Работа выполнена на кафедре «Атомные, тепловые станции и медицинская инженерия» Нижегородского государственного технического университета.

Научный руководитель – доктор технических наук, профессор

Ефанов Александр Дмитриевич

Официальные оппоненты: доктор технических наук, профессор

;

кандидат технических наук, профессор

.

Ведущая организация –

Защита состоится _____________ 2007г. на заседании диссертационного совета Д.212.165.03 при Нижегородском государственном техническом университете по адресу: 603600, г. Нижний Новгород, ул. Минина, д. 24, корп. 5, ауд. 5232.

С диссертацией можно ознакомиться в библиотеке Нижегородского государственного технического университета.

Автореферат разослан ________________ 2007 г.

Ученый секретарь

диссертационного совета Дмитриев С.М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы:

Среди комплекса проблем, связанных с созданием ускорительно-управляемых систем, одной из основных задач является разработка научно-технических основ для проектирования жидкометаллических мишеней, обеспечивающих работу с ускорителями большой мощности (1 МВт и более), при требуемых характеристиках нейтронного поля, требуемых температурных характеристиках и заданном ресурсе. В настоящее время в мире отсутствует практический опыт создания и эксплуатации мишеней большой мощности, в частности, с применением в качестве размножающего нейтроны вещества тяжелых жидкометаллических теплоносителей (ТЖМТ – свинца и эвтектического сплава свинец-висмут). Высокий выход нейтронов (около 20 на один акт взаимодействия) под действием потока высокоэнергетических протонов, сравнительно малое сечение поглощения нейтронов, радиационная стойкость, возможность отводить высокотемпературное тепло при высокой удельной энергонапряженности и низком давлении позволяют рассматривать в качестве перспективных тяжелые жидкометаллические теплоносители.

В нашей стране работы по исследованиям, направленным на создание таких установок были начаты и проводятся в Институте теоретической и экспериментальной физики, в Физико-энергетическом институте, в ОКБМ “Гидропресс” и в Нижегородском государственном техническом университете.

Цель работы:

Конечной целью настоящей работы является разработка, на основе экспериментальных и теоретических исследований, научно-технических основ организации проточной части жидкометаллической мишени, сообщенной с полостью ускорителя, а так же рекомендации по принципиальным научно-техническим решениям контура такой мишени и мишенного контура.





Для достижения указанной цели в работе решались следующие задачи:

- Создание экспериментальных стендов, моделей мишеней и проведение исследований гидродинамических характеристик проточной части полномасштабных жидкометаллических мишеней на водяном теплоносителе с вертикальным и горизонтальным расположением осей моделей.

- Создание экспериментального стенда и проведение исследований условий незатекания теплоносителя в имитатор патрубка подвода частиц от ускорителя частиц.

- Создание экспериментальных стендов со свинец-висмутовым теплоносителем, моделей мишеней и исследование гидродинамических характеристик и условий незатекания эвтектики в имитатор патрубка подвода частиц от ускорителя при вертикальном и горизонтальном размещении оси модели.

- Создание экспериментальных установок и проведение исследований процесса массопереноса паров свинца в полости мишени.

- Теоретический и расчетный анализ условий незатекания теплоносителя в полость ускорителя.

Научная новизна работы:

В результате проведенных исследований и использования созданных моделей экспериментальных стендов, установок и методик:

- на полномасштабных водных моделях жидкометаллических мишеней получены зависимости характеристик проточной части мишени от величины угла закрутки потока, расположения оси мишени, величины противодавления, значения локальных скоростей: послуживших основой для создания мишеней для испытаний их в среде ТЖМТ;

- теоретическим и расчетным анализом и экспериментальными исследованиями определены условия незатекания теплоносителя в полость ускорителя частиц, контактирующую с рабочей полостью жидкометаллической мишени;

- на полномасштабных моделях жидкометаллических мишеней на эвтектическом сплаве свинец-висмут в условиях рабочих температур, скоростей и давлений, с расходами до 80,0103 кг/час при вертикальном и горизонтальном расположениях осей мишени исследованы характеристики проточных частей мишеней.

Практическая ценность:

- Предложены и экспериментально обоснованы рекомендации по техническим решениям проточной части жидкометаллической мишени, самой конструкции мишени и мишенного контура.

- Предложены и обоснованы научно-технические рекомендации по исключению поступления жидкометаллического теплоносителя в полость ускорителя элементарных частиц при нормальной работе и при аварийных ситуациях.

- Предложены варианты схемно-конструктивных технических решений жидкометаллических мишеней и мишенного контура, защищенные тремя патентами и четырьмя авторскими свидетельствами РФ (в соавторстве).

На защиту выносятся:

- Результаты экспериментальных исследований гидродинамических характеристик проточной части, на полномасштабных моделях жидкометаллических мишеней на воде.

- Результаты теоретического анализа, расчетных и экспериментальных исследований условий незатекания жидкометаллического теплоносителя в полость ускорителя экспериментальных частиц, сообщенную с полостью мишени.

- Результаты экспериментальных исследований гидродинамических характеристик проточной части вариантов конструкции мишени с вертикальным и горизонтальным расположением осей, при рабочих условиях в проточной части мишени.

- Результаты исследований массопереноса и отложений теплоносителя в полости жидкометаллической мишени.

- Рекомендации по научно-техническим решениям проточной части жидкометаллической мишени, конструкции мишени в целом и мишенного контура.

Степень обоснованности научных положений и рекомендаций, сформированных в диссертации:

Достоверность полученных научных положений и рекомендаций, сформулированных в диссертации подтверждается:

- выполнением исследований с использованием современных стендов, методик и современных (компьютерных) методов сбора и обработки информации;

- полномасштабными испытаниями рекомендуемых научно-технических решений в условиях рабочих скоростей, расходов, температур и давлений жидкометаллического теплоносителя;

- защитой предлагаемых научно-технических решений авторскими свидетельствами и патентами РФ.

Апробации работы и публикации:

Материалы работы докладывались и обсуждались на ежегодных Международных и отечественных конференциях по теплофизике и по проблемам жидкометаллических теплоносителей в г. Обнинске в 1999, 2001, 2002, 2003 годах, публиковались на международных конференциях в США (2002 году), Словакии (2000 г.), в журналах “Атомная энергия” в 1997, 1998, 1999, 2000 годах, “Вопросы атомной науки и техники” в 1999 году, на семинаре по расчетам жидкометаллических мишеней июнь-июль 2001 год, на региональных нижегородских сессиях молодых ученых 1998 – 2003 годах.

Основное содержание диссертации изложены в 10 научно-технических отчетах, 19 докладах, в 5 публикациях в журналах, 4 авторских свидетельствах и 3 патентах РФ.

Личный вклад автора:

Автором лично выполнен аналитический обзор, совместно с научным руководителем сформулированы цель и задачи работы. Под руководством автора, автором лично и при непосредственном участии автора созданы экспериментальные стенды и проведены экспериментальные и теоретические исследования условий незатекания теплоносителя жидкометаллической мишени в полость ускорителя заряженных частиц. Автором лично разработаны экспериментальный участок, проведена доработка экспериментального жидкометаллического стенда, программа – методика испытаний и проведены испытания полномасштабной жидкометаллической мишени с вертикальной осью на эвтектическом сплаве свинец-висмут, проведена обработка результатов исследований.

Автором лично, под руководством и при непосредственном участии разработаны программа-методика испытаний, предложен и разработан экспериментальный участок, проведены исследования характеристик жидкометаллической мишени с горизонтальным размещением ее оси на эвтектическом сплаве свинец-висмут, проведена обработка результатов исследований.

Личное участие автора подтверждается публикациями в реферируемых журналах, докладами на международных и отечественных конференциях, авторскими свидетельствами, патентами и научно-техническими отчетами.

В проведении исследований, отраженных в диссертации принимали участие сотрудники кафедры “АТС и МИ” НГТУ д.т.н. профессор Безносов А.В., к.т.н. Давыдов Д.В., к.т.н. Пинаев С.С., зав. лабораториями Серов В.Е., магистры и студенты кафедры “АТС и МИ”, за что автор выражает благодарность.

Структура и объем диссертации

Диссертация состоит из введения, пяти глав и заключения. Объем работы составляет 214 страница, XXX рисунков, XX таблиц, списка использованных источников из 44 наименований, в том числе 44 работ автора.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обосновывается актуальность темы диссертации, определяются цель и задачи исследования, приводится общая характеристика работы. Приводятся результаты анализа основных вариантов конструкций жидкометаллических мишеней. Необходимость разработки проточной части жидкометаллической мишени и исследование гидродинамических характеристик и условий незатекания эвтектики в имитатор патрубка подвода теплоносителя определила комплекс исследований, конструкторских и экспериментальных работ, изложенных в главах диссертации.

В первой главе приводятся результаты анализа исследований, выполненных конструкторских проработок жидкометаллических мишеней (рисунок 1). Рассматриваются состав жидкометаллической мишени, роль ориентации оси мишени в пространстве. Конструкция проточной части должна исключать вскипание теплоносителя (даже локальное), обеспечивать требуемую геометрию профиля потока нейтронов, обеспечивать максимальный динамический напор на преодоление гидравлического сопротивления мишени и отводящего трубопровода, а также удовлетворять ряду других требований.

Рисунок 1 - Схема жидкометаллической мишени

1 – узел стыковки с ускорителем, 2 – охлаждаемая герметичная перегородка, 3 – ёмкость протечек ЖМТ (только для горизонтального положения), 4 – катушки электромагнитного запирания ионов примесей и ЖМТ, 5 – патрубок подвода ЖМТ, 6 – теплоизоляция, 7 – напорная камера, 8 – лопатки направляющего аппарата, 9 – обрез патрубка подвода частиц, 10 – рабочая полость мишени, 12 – патрубок отвода частиц, 13 – система охлаждения, 14 – задвижка клиновая, 15 – свободная поверхность ЖМТ, 16 – опоры, 17 – бланкет

Приведены результаты анализа и исследований физической модели течения потока в мишени применительно к характеристикам проведенных экспериментальных исследований.

Основной задачей построения модели, описывающей протекающие физические, теплофизические и другие процессы, является оптимизация конструктивных и режимных параметров жидкометаллической мишени на основании корректных расчетных экспериментов. Построение полной корректной физической модели представляется достаточно сложной и вероятно, неразрешимой задачей, экспериментальные исследования и достигаемая при этом оптимизация конструкции мишени и ее параметров, является необходимым этапом создания мишени до отработки мишени в составе ЖМТ контура, совместно с ускорителем частиц и с бланкетом.

В главе рассматриваются элементы, ограничивающие поступление жидкого металла, паров и газов элементов и соединений в направлении полости ускорителя.

Во второй главе приводятся экспериментальные исследования моделей мишени на воде включающие в себя два этапа.

Целью экспериментальных работ по первому этапу являлось исследование гидравлических характеристик модели, определение геометрических характеристик и положения свободной поверхности потока, определение профиля скоростей в объеме мишени.

На втором этапе исследовались условия незатекания теплоносителя в полость имитатора патрубка подвода частиц от ускорителя на упрощенной модели мишени.

Конечной целью испытаний являлось экспериментальное обоснование и оптимизация конструкции проточной части мишени на воде с точки зрения гидродинамических и ряда других характеристик для перехода к следующему этапу отработки конструкции - на теплоносителе свинец-висмут в диапазоне рабочих температур и расходов на стенде ФТ-1 кафедры “АТС и МИ” НГТУ.

Испытания на I этапе проводились последовательно с двумя вариантами конструкции модели - СБ 500 ФТ и СБ 500 АФТ (рисунок 2), различающимися геометрией входа потока в модель. Конструкции основных частей выполнялись из органического стекла для обеспечения возможности визуального наблюдения за структурой потока, а также за свободной поверхностью воды в полости мишени.

Проведенные эксперименты подтвердили возможность формирования свободной поверхности (“воронки”) заданной геометрии в проточной части путем изменения геометрии проточной части и характеристик потока и поддержание патрубка-имитатора подвода частиц в осушенном состоянии при вертикальном положении оси устройства. При горизонтальном расположении оси, вероятно, возможно добиться такого же результата при больших скоростях потока, чем те, при которых проводились испытания.

 Модель мишени СБ 500 ФТ Далее-1

Рисунок 2 - Модель мишени СБ 500 ФТ

Далее были проведены эксперименты на воде (II этапе), с целью выбора параметров модели и режимов, позволяющих минимизировать или исключить возможность затекания в полость ускорителя тяжелого теплоносителя, обтекающего цилиндрический кольцевой «срез» патрубка подвода частиц от ускорителя.

Целью данных экспериментальных работ, являлось:

- определение условий незатекания в газовую полость имитатора патрубка подвода частиц от ускорителя;

- определение зависимости давления в полости имитатора патрубка подвода частиц от ускорителя от величины скорости и угла закрутки потока в рабочей полости модели мишени, для различных относительных длин кольцевого зазора (L/dэкв);

- определение зависимости давления в полости имитатора патрубка подвода частиц от ускорителя от величины противодавления на выходе из проточной части модели;

- определение зависимости давления в полости имитатора патрубка ускорителя от перепада высот между мишенью и свободным уровнем в сливной емкости;

- разработка рекомендаций для обеспечения выбора геометрии проточной части модели и режимных параметров испытаний модели на свинец-висмутовом теплоносителе в условиях, приближенных к натурным;

Испытания проводились на стенде ФТ-03М (рисунок 3), модель мишени поочередно устанавливалась в вертикальное и горизонтальное положение.

Полученные результаты экспериментальных исследований влияния геометрии проточной части на гидродинамику потока и условия незатекания теплоносителя в полость ускорителя позволяют сделать следующее основные выводы:

- Не был отмечен заброс теплоносителя в полость цилиндрического обтекателя на скоростях от 1 до 3 м/с для обтекателя 29 мм с углом закрутки



Pages:   |
|
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.