авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Исследование и разработка устройств для подачи реагента в трубопровод при давлении реагента ниже давления в трубопроводе

-- [ Страница 1 ] --

На правах рукописи

Поляков Алексей Владимирович

ИССЛЕДОВАНИЕ И РАЗРАБОТКА УСТРОЙСТВ ДЛЯ

ПОДАЧИ РЕАГЕНТА В ТРУБОПРОВОД ПРИ ДАВЛЕНИИ РЕАГЕНТА НИЖЕ ДАВЛЕНИЯ В ТРУБОПРОВОДЕ

Специальности: 25.00.17 – Разработка и эксплуатация нефтяных и газовых

месторождений;

05.02.13 – Машины, агрегаты и процессы (нефтегазовая

отрасль)

АВТОРЕФЕРАТ


Диссертация на соискание ученой степени

кандидата технических наук

Краснодар – 2012

Работа выполнена в ФГБОУ ВПО

«Кубанский государственный технологический университет»



Научные руководители: доктор технических наук, профессор

Кунина Полина Семеновна

кандидат технических наук, профессор

Бойко Сергей Иванович


Официальные оппоненты: Гарушев Александр Рубенович

доктор технических наук, профессор

кафедры нефтегазовых промыслов

ФГБОУ ВПО «Кубанский государственный

технологический университет»


Миненков Владимир Михайлович

кандидат технических наук

ООО НПК «Эксбур-К»,

генеральный директор

Ведущая организация: ООО НК «Роснефть - НТЦ», г. Краснодар



Защита состоится «30» мая 2012 года в 1500 часов на заседании диссертационного совета ДМ 212.100.08 при Кубанском государственном технологическом университете по адресу: 350020, г. Краснодар, ул. Красная, 135, ауд. 94

С диссертацией можно ознакомится в библиотеке Кубанского государственного технологического университета по адресу: 350072, г. Краснодар, ул. Московская, 2

Автореферат разослан «28» апреля 2012 г.

Ученый секретарь

диссертационного совета

кандидат химических наук, доцент Г.Г. Попова


Общая характеристика работы

Актуальность проблемы. Одной из серьезных проблем при эксплуатации промысловых газопроводов, а также оборудования для подготовки газа к транспорту в зимнее время года, особенно в северных регионах, является гидратообразование. Известно, что образования гидратов приводит к значительному увеличению гидравлического сопротивления и снижению пропускной способности трубопроводов вплоть до полного закупоривания, что, в свою очередь, нередко способствует возникновению аварийных и опасных ситуаций. Поэтому периодически или постоянно необходимо вводить в трубопровод ингибитор (обычно метанол) для предотвращения образования гидратов и ликвидации гидратных пробок. Однако ввод ингибитора должен быть строго дозирован, т.к. его переизбыток может привести к заполнению нижней части трубопровода метанолом, что затрудняет его эксплуатацию вследствие образования уже метаноловых пробок. Кроме того, переизбыток метанола может привести к выходу из строя оборудования перекачки и регулирования потока газа и, особенно, контрольно-измерительных приборов. Поэтому задача оптимизации системы ввода ингибитора в промысловые газопроводы на сегодняшней день весьма актуальна.



Непосредственно само устройство для ввода ингибитора в трубопровод является последним, но весьма важным звеном довольно сложных систем впрыска ингибитора, и от эффективности его работы во многом зависит бесперебойная и безаварийная эксплуатация промысловых трубопроводов и технологического оборудования. На сегодняшний день существующие устройства для дозированного впрыска метанола обладают рядом недостатков, таких как: недостаточная контактная поверхность потока газа и вводимого ингибитора, передозировка, требования дополнительных энергозатрат, значительная металлоемкость оборудования.

Поэтому создание более надежного и эффективного устройства ввода ингибитора для предотвращения гидратообразования в промысловые газопроводы и технологическое оборудование подготовки газа к транспорту является весьма актуальной задачей.

Цель работы:

Совершенствование средств обеспечения безаварийной работы систем промыслового сбора и подготовки газа путем разработки эффективного эжекционного струйного аппарата для дозированного ввода метанола в промысловые газопроводы и технологическое оборудование с целью ликвидации и предотвращения возникновения гидратообразований.

Основные задачи исследования:

  1. На основании анализа существующих принципов функционирования эжекционных струйных аппаратов выявить оптимальную компоновку и конструктивные размеры элементов этих устройств, предназначенных для использования в системах дозированного впрыска метанола как непосредственно на промыслах, так и в составе установок подготовки газа.
  2. Теоретически обосновать зависимость эффективности процесса эжекции от давления и скорости потока газа; поперечного сечения, конусности конфузора-диффузора и длины камеры смешения эжекционного аппарата.
  3. Разработать экспериментальную лабораторную установку, моделирующую гидрогазодинамические условия в эжекционных струйных аппаратах.
  4. На основании проведенных теоретических и экспериментальных исследований разработать конструкцию эжекционного струйного аппарата, обеспечивающего повышенную эффективность ввода ингибитора по сравнению с существующими традиционными методами.
  5. Провести экспериментальные исследования эффективности работы разработанного устройства с целью подтверждения теоретически обоснованных зависимостей и сравнении его с существующими.
  6. Разработать алгоритм расчета эжекционного устройства для дозированного впрыска метанола в промысловые газопроводы и технологическое оборудование УКПГ.
  7. Разработать теоретические основы расчета распределения температур в газосборной сети и сопротивлений при подаче метанола и на их основе программного обеспечения для систем автоматической дозированной подачи метанола.

Научная новизна

1. На базе теоретических и экспериментальных исследований научно обоснованы гидрогазодинамические характеристики работы односопловых струйных эжекционных аппаратов для ввода ингибитора в промысловый газопровод.

2. Предложен способ ввода метанола в трубопровод с помощью эжекционных струйных аппаратов, в котором реализованы полученные экспериментальным путем данные по эффективности процесса захвате высоконапорной среды газа низконапорной средой метанола.

3. Разработаны теоретические основы расчета распределения температур в газосборной сети и сопротивлений при подаче метанола

Методы исследований

В исследованиях использовались методы планирования экспериментов, практические методы экспериментального исследования, методы системного анализа, математического моделирования процессов эжектирования, адекватно отражающий структуру эжекционной турбулентной струи и процессов эжектирования в исследуемом струйном аппарате, теоретические основы гидрогазодинамики течения флюидов и поисковые методы оптимального проектирования.

Личный вклад соискателя

Все экспериментальные работы, аналитические зависимости, вошедшие в диссертацию, их анализ и выводы получены и доказаны лично автором. В работах, опубликованных в соавторстве, автор принимал участие в постановке задачи исследования, получении и обработке теоретических и экспериментальных результатов, обобщении опытных данных и разработке программного обеспечения.

Практическая ценность работы

1.Внедрение в производство разработанного автором эжекционного струйного аппарата позволит:

- решить проблему гидратообразования в промысловых газопроводах и на установках комплексной подготовки газа путем установки разработанного устройства ввода;

- повысить степень энергосбережения на промыслах, за счет снижения затрат на подачу ингибитора насосами дозаторами и использования энергии давления газа;

- снизить расход ингибитора благодаря высокой степени дисперсности вводимого ингибитора.

2. Разработанная методика расчета струйного аппарата может быть использована для систем эжекционного впрыска метанола как на вновь проектируемом, так и на уже эксплуатируемом промысловом газопроводе.

3. Доказано, что разработанный аппарат и способ ввода ингибитора в промысловый газопровод более эффективен по сравнению с традиционными методами, что подтверждается соответствующим заключением о внедрении.

4. Разработано программное обеспечение расчета распределения температур в газосборной сети и сопротивлений при подаче метанола для систем автоматической дозированной подачи метанола.

5. Издана монография (в соавторстве) «Проектирование газонефтепроводов» для студентов специалистов, бакалавров, магистров и аспирантов, обучающихся по направлению 131000 «Нефтегазовое дело».

Основные защищаемые положения

1. Методика расчета и конструирования эжекционных струйных аппаратов для дозированного ввода метанола в трубопровод.

2. Способ и устройство дозированного ввода ингибитора для борьбы с гидратообразованием в системах промыслового сбора и подготовки газа на промыслах.

3. Теоретические основы расчета распределения температур в газосборной сети и сопротивлений при подаче метанола

4. Программное обеспечение расчета распределения температур в газосборной сети и сопротивлений при подаче метанола для систем автоматической дозированной подачи метанола

Апробация результатов работы

Результаты диссертационной работы и ее основные положения докладывались и обсуждались на Международной научно-практической конференции «Сбор, подготовка и транспортировка углеводородов 2012» (г.Сочи, 2012 г.), научно-технической конференции молодых специалистов ООО «РН-Краснодарнефтегаз» (г. Краснодар – 2009, 2010 гг.), научно-технических советах ООО «Газпром – Трансгаз - Кубань» и научно -практических семинарах кафедр «Оборудования нефтяных и газовых промыслов», «Нефтегазового промысла» ФГБОУ ВПО «Кубанский государственный технологический университет» (2009-2011 гг.).

Публикации

Основное содержание диссертации отражено в 10 печатных работах, в том числе 5-ти статях в изданиях, рекомендованных ВАК РФ, 2 патентах на изобретение и 3-х патентах на полезные модели.

Объем и структура работы


Диссертационная работа изложена на 138 страницах машинописного текста, содержит 19 таблиц, 45 рисунков. Состоит из введения, четырех разделов, основных выводов и рекомендаций, списка использованных источников из 156 наименований и двух приложений.


Содержание работы

Во введении обоснована актуальность работы, определены цели и задачи исследования, научная новизна и практическая значимость диссертационной работы, определены основные задачи исследований и защищаемые положения.

В первой главе рассмотрены состав и структура гидратов условия их образования и места наиболее вероятного их скопления. Приведены применяемые в промысловых условиях способы борьбы с образованием гидратов и методы их ликвидации.

На основании анализа достоинств и недостатков существующих систем ввода ингибитора в газопровод автором был предложен способ, дающий возможность строго дозировано вводить ингибитор в промысловый газопровод, причем непосредственный ввод ингибитора осуществляется через эжекторное устройство. Предлагаемый способ и устройство ввода ингибитора в трубопровод, по мнению автора, является более эффективным по сравнению с существующими способами, что достигается использованием в качестве устройства ввода ингибитора эжекционного струйного аппарата, который, благодаря высокой степени дисперсности газожидкостного потока на выходе, позволяет не только снизить расход ингибитора, но и значительно уменьшить затраты на электроэнергию, так как подача ингибитора осуществляется за счет энергии перекачиваемого газа. Кроме того, эжектор (рисунок 2) обладает высокой надежностью за счет простоты конструкции, и потому не требует дополнительного обслуживания. На рисунке 1 представлена принципиальная схема установки ввода ингибитора в промысловый газопровод





1-эжектор, 2 - газопровод, 3- емкость, 4 - линия подачи ингибитора, 5-клапан регулирующий подачу ингибитора в трубопровод 6-уравнительная линия, 7-клапан регулятор уравнительной линии.

Рисунок 1 – Принципиальная схема установки ввода ингибитора в промысловый газопровод

Установка работает следующим образом. По магистральному газопроводу 2 газ подается под давлением на эжектор 1, под действием давления перекачивающего газа в эжекторе 1 создается разрежение, благодаря которому происходит приток низконапорной жидкости из емкости 3 по линии подачи ингибитора 4 через регулирующий клапан 5 подается метанол в эжектор 1, далее в эжекторе 1 происходит смешивание газа и жидкости (ингибитора), причем метанол диспергируется, на выходе из эжектора 1 давления газожидкостной смеси восстанавливается. Клапана регуляторы 5, 7 служат для регулирования подачи ингибитора и поддержания оптимального давления в емкости 3, а также для отключения установки.

На рисунке 2 приведена принципиальная схема предлагаемого эжекторного струйного аппарата для впрыска метанола в газопровод.

1-сопло, 2-камера смешения,2-диффузор

Рисунок 2 – Принципиальная схема эжекторного струйного аппарата

Вследствие того, что принципы действия всех эжекционных струйных аппаратов основаны на использовании струйных течений, в первом разделе рассмотрены основные свойства, теоретические, эмпирические и полуэмпирические зависимости расчетов струйных течений газа.

В связи с этим, сочетая теоретические и экспериментальные способы исследования, в данной работе поставлены следующие задачи:

- разработка теории процесса в аппарате со струйными течениями жидкостей и газов;

- экспериментальная проверка основных положений разработанных моделей и их корректировка;

- разработка алгоритма расчета процесса и основных геометрических параметров эжекционного аппарата.

Во второй главе предложен теоретический анализ процесса эжектирования низконапорной среды высоконапорной средой.

Принята следующая модель процесса эжектирования низконапорной среды высоконапорной средой для односоплового струйного аппарата. Высоконапорная среда отделяется от потенциального ядра струи (рисунок 3), захватывает из окружающего струю пространства низконапорную среду и передает ей свою кинетическую энергию. Из полученной смеси образуется расширяющийся пограничный слой. Принимаем, что расширение пограничного слоя и сужение потенциального ядра струи происходит по линейному закону, а скорость низконапорной среды на входе в эжектор пренебрежимо мала по сравнению со скоростью высоконапорной среды. В переходном сечении 1-1 турбулентной струи смесь высоконапорной и низконапорной сред займет всю площадь этого сечения.

1 - сопло; 2 - потенциальное ядро струи; 3 - пограничный слой струи; 4 - изотаха, ограничивающая потенциальное ядро струи; 5,6 - изотахи, ограничивающие ядра потока смеси на основном участке струи; А - кривая изменения коэффициента эжекции Ко по длине струи; Б - кривая изменения коэффициента полного напора струи ст по ее длине; В - кривая изменения КПД процесса эжекции по длине струи ст.при /=1,25 и Pв /Pн=20

Рисунок 3 – Расчетная схема турбулентного струйного течения.

От переходного сечения 1-1 низконапорную среду из окружающего пространства захватывает та смесь, которая образовалась на начальном участке струи от сечения 0-0 до сечения 1-1. В результате захвата низконапорной среды из пространства смесью, отделившейся от потока, происходит дальнейшее расширение пограничного слоя, но, в то же время, происходит сужение от сечения 1-1 ядра потока, состоящего из смеси высоконапорной и низконапорной сред. Принимаем также, что расширение пограничного слоя и сужение ядра потока от сечения 1-1 вдоль по струе происходит по линейному закону. Аналогично происходит процесс эжектирования низконапорной среды из окружающего пространства на участке струи после сечения 2-2 и т.д.

Принимается выражение для расчета КПД процесса эжекции низконапорной среды в сечении Х-Х струйного течения в следующем вид:

(1)

где - массовый расход низконапорной струи м3/с; - массовый расход высоконапорной струи м3/с; - плотность высоконапорной среды кг/м3; - плотность низконапорной среды кг/м3; - давление низконапорной струи Па; - давление струи Па; - давление высоконапорной струи Па.

Количество отделившейся высоконапорной среды от потенциального ядра струи на участке от сечения 0-0 до сечения Х-Х выразим в виде уравнения:

, (2)

где - площадь высоконапорной поверхность струи м2

скорость ядра струи м/с; (3)

где - коэффициент теплоемкости.

в котором скорость ядра струи зависит от режима истечения высоконапорной среды из сопла и описывается уравнением (3), а величина fB является площадью, занятой в сечении Х-Х высоконапорной средой, отделившейся от потенциального ядра струи на рассматриваемом участке. Указанная площадь зависит от угла сужения потенциального ядра струи, длины рассматриваемого участка и радиуса струи в сечении 0-0, который принимаем равным радиусу отверстия выхода сопла в сечении 0-0. Количество захваченной низконапорной среды GН на участке струи от сечения 0-0 до сечения Х-Х выразим в виде:

(4)

где - скорость пограничного слоя струи м/с;

- площадь низконапорной поверхность струи м2.

Средняя скорость пограничного слоя находится из выражения:

(5)

Среднюю скорость всей струи в сечении Х-Х примем в виде:

(6)

. Основываясь на том, что статическое давление в любой точке турбулентной струи равно статическому давлению окружающей ее низконапорной среды Рн, запишем выражение для полного напора струи РСТ в сечении Х-Х в виде:

, (7)

где - плотность струи кг/м3.



Pages:   || 2 | 3 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.