авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 |

Модель магнитного гистерезиса и её применение в магнитной структуроскопии конструкционных сталей

-- [ Страница 1 ] --

На правах рукописи

НИЧИПУРУК Александр Петрович

МОДЕЛЬ МАГНИТНОГО ГИСТЕРЕЗИСА

И ЕЁ ПРИМЕНЕНИЕ В МАГНИТНОЙ

СТРУКТУРОСКОПИИ КОНСТРУКЦИОННЫХ

СТАЛЕЙ

Специальность 05.02.11

Методы контроля и диагностика

в машиностроении

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Екатеринбург 2007

Работа выполнена в Институте физики металлов Уральского отделения РАН

Официальные оппоненты: доктор технических наук,

профессор Гуревич Сергей

Юрьевич

доктор физико-математических

наук Ринкевич Анатолий

Брониславович

доктор физико-математических наук, профессор Васьковский

Владимир Олегович

Ведущая организация - Физико-техничeский

Институт УрО РАН

Защита состоится 31 октября 2008 г. в 1100 часов

на заседании диссертационного совета Д 004.003.01 в

Институте физики металлов УрО РАН по адресу 620041

г. Екатеринбург, ГСП-170, ул. С.Ковалевской, 18

С диссертацией можно ознакомиться в библиотеке Института физики металлов УрО РАН

Автореферат разослан “_____” сентября 2007 г.

Ученый секретарь

диссертационного совета

доктор физико-математических наук Лошкарева Н.Н.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследований. Подавляющее число изделий, машин и механизмов, сооружений и объектов производится из поликристаллических ферромагнитных материалов, главным образом - сталей. Необходимый комплекс эксплуатационных свойств получают в результате подбора материала и его последующих термических, механических или иных обработок. Структурные и фазовые превращения, происходящие в металлах и сплавах при изготовлении и эксплуатации, приводят к изменению их физических и механических свойств. Связь между комплексом физических свойств (магнитных, электрических, магнитоупругих и т.д.), с одной стороны, и кристаллографической структурой, дефектностью, уровнем и характером напряжений, механическими и другими эксплуатационными характеристиками, с другой стороны, лежит в основе такого направления неразрушающего контроля, как структуроскопия. Благодаря высокой информативности и чувствительности к различного рода дефектам структуры наиболее востребованными и перспективными являются магнитные методы структуроскопии.

Развитие данной области знаний проходило по нескольким направлениям. Во-первых, вместе с развитием науки о магнитных явлениях, накапливались экспериментальный материал и его теоретическое обоснование по исследованию взаимосвязи структурного состояния ферромагнетиков с их магнитными свойствами. Во-вторых, стали появляться все более совершенные первичные преобразователи магнитного поля. Первоначально используемые для измерения магнитных полей, например, в навигации, геофизике, они быстро нашли свое применение в приборах для магнитной структуроскопии. Наконец, в-третьих, для решения практических задач структуроскопии развивалось специализированное приборостроение, как прикладная часть данной науки.

Если приборная база неразрушающего контроля развивается в последние годы значительными темпами, то методическое оснащение магнитных методов контроля заметно отстает. Одной из основных причин такого отставания, по-видимому, является явный недостаток модельных представлений о перемагничивании железо-углеродистых сплавов, что в отсутствии полноценной теории магнитного гистерезиса приводит к недостатку новых параметров контроля.

Существующие на сегодня модели, связывающие параметры магнитного гистерезиса с параметрами структурных неоднородностей ферромагнитных сталей (размер зерна, количество и размеры слабомагнитных и немагнитных включений, величина и распределение внутренних напряжений) недостаточно полно отражают потребности магнитной структуроскопии, учитывая ее современные аппаратурные возможности.

Одной из актуальных задач структуроскопии является оценка напряжений в конструкционных сталях. Учитывая, что амплитуды внутренних микронапряжений неразрывно связаны с параметрами гистерезиса 90- градусных доменных границ, актуальным является получение информации именно об этих параметрах.

Таким образом, существует необходимость в разработке модели магнитного гистерезиса для ферромагнетиков с тремя осями легкого намагничивания, к которым относятся практически все конструкционные ферромагнитные стали, реализация которой на практике позволила бы проводить раздельный анализ «скачков» намагниченности как на 180 так и на 90 градусов, оценивать критические поля для этих типов изменений намагниченности в присутствии наведенной магнитной анизотропии с целью использования этих полей в качестве новых параметров контроля.

Наличие такой модели в совокупности с аппаратурой, позволяющей применить ее на практике, могло бы расширить возможности магнитных методов не только для оценки величины внутренних напряжений в действующих конструкциях, но и для более детального анализа структурных и фазовых составляющих термоупрочняемых стальных изделий, что в свою очередь должно привести к большей информативности и надежности их неразрушающего контроля.

Цель настоящей работы заключается в изучении магнитных и магнитоупругих свойств поликристаллических трехосных ферромагнетиков, связанных как с обратимым, так и необратимым перемагничиванием, выявлении перспективных параметров контроля и создании новых методов и средств структуроскопии материалов и изделий.

Указанная цель достигается решением следующих задач:

- изучение закономерностей обратимого смещения 90-градусных доменных границ, происходящего под воздействием знакопеременной динамической нагрузки;

- исследование влияния деформационных и термических обработок на магнитные свойства ферромагнитных сталей;

- моделирование магнитного гистерезиса, поиск и решение уравнений, описывающих изменение намагниченности ферромагнетиков на кривой намагничивания и предельной петле гистерезиса;

- разработка метода структуроскопии ферромагнитных материалов с использованием параметров модели;

- создание первичных преобразователей и микропроцессорной аппаратуры для практической реализации предложенного метода.

Научная новизна полученных в диссертации результатов кратко может быть сформулирована в виде следующих положений:

- найдены параметры, характеризующие как обратимые так и необратимые процессы смещения 90-градусных доменных границ в сплавах на основе железа (в трехосных ферромагнетиках), по измерениям которых возможна оценка средней величины внутренних неоднородных напряжений;

- установлено, что при квазистатическом режиме перемагничивания (скорость перемагничивания составляет 3-5 А/см·с) сталей с ферритной структурой на кривых полевой зависимости дифференциальной магнитной восприимчивости, измеренных на предельной петле магнитного гистерезиса, разделяются максимумы, связанные с необратимыми смещениями 180-градусных и 90-градусных доменных границ;

- разработаны модельные представления о магнитном гистерезисе ферромагнетиков с тремя осями легкого намагничивания, показывающие, что для адекватного описания полевых зависимостей намагниченности и восприимчивости в таких материалах необходим учет двух критических полей и поля наведенной магнитной анизотропии;

- путем экспериментальных исследований установлена область возможного практического использования модели, включающая в себя косвенную оценку средней величины внутренних неоднородных напряжений в деформированных сталях с преимущественно ферритной структурой, а также анализ влияния на магнитные свойства отдельных структурных составляющих (границы зерен, включения карбидной фазы и т.д.) для сталей со структурами перлита.

Научная и практическая ценность работы:

- работа вносит вклад в способы описания процессов перемагничивания ферромагнетиков с кубической симметрией решетки. Полученные в ней параметрические выражения для намагниченности и дифференциальной восприимчивости позволяют рассчитывать эти величины при изменении намагничивающего поля. Особо важным является то, что параметры расчета носят ясный и очевидный физический характер;

- разработан оригинальный способ оценки средней величины внутренних микронапряжений, основанный на измерении обратимой магнитоупругой проницаемости в подвергнутых статическому упругому растяжению ферромагнитных конструкционных материалах;

- созданные модельные представления, их реализация и апробация привели к разработке нового метода контроля, основанного на компьютерной обработке петель магнитного гистерезиса и получения, в результате этого, такого параметра, как поле наведенной магнитной анизотропии. Метод испытан с помощью разработанной аппаратуры;

- создано программное обеспечение позволяющее связать разработанную аппаратуру с персональным компьютером, проводить анализ (в рамках модели) экспериментальных петель гистерезиса;

- результаты исследований и разработки внедрены на Северском трубном заводе, Уралвагонзаводе., Чебоксарском агрегатном заводе.

Апробация результатов. Основные результаты диссертации докладывались на 15 Всемирной конференции по неразрушающему контролю (Италия, г. Рим, 2000г.), Международной конференции “Физические методы неразрушающего контроля” (Болгария, г. Варна, 1991 г.); ХI Всесоюзной научно-технической конференции “Неразрушающие физические методы и средства контроля” (Москва, 1987 г.); XIII Российской научно-технической конференции “Неразрушающий контроль и диагностика" (C.-Петербург, 1993 г.); XV Российской научно-технической конференции “Неразрушающий контроль и диагностика” (Москва, 1999 г.); XVI Российской научно-технической конференции “Неразрушающий контроль и диагностика” (C.-Петербург, 2002 г.); XVII Российской научно-технической конференции “Неразрушающий контроль и диагностика” (Екатеринбург, 2005 г.); X Уральской научно-технической конференции “Физические методы и приборы неразрушающего контроля” (Ижевск, 1989 г.); XVI, XVII, XVIII, XVI, XX, XXI Уральских (с международным участием) конференциях “Контроль технологий, изделий и окружающей среды физическими методами" (Оренбург, 1996 г., Екатеринбург, 1997 г., Ижевск, 1998 г., Уфа, 2000 г., Екатеринбург, 2001 г., Тюмень, 2003 г.).

Достоверность результатов обеспечивается:

а) использованием аттестованных методов и средств измерений магнитных свойств ферромагнитных материалов;

б) применением современных методов обработки экспериментальных результатов и использованием протестированного программного обеспечения;

в) соответствием полученных в работе промежуточных данных о магнитных и магнитоупругих свойствах ферромагнетиков данным других авторов;

г) проведением исследований на материалах с различной структурой и изменяющимися в широких пределах физическими свойствами;

д) положительными результатами практического использования разработанных методов и средств структуроскопии изделий.

Личный вклад автора включает выбор темы исследования, постановку целей и задач диссертационной работы, формирование комплекса методик исследования, обеспечивающих решение поставленных задач, создание одной из установок, применяемых при исследовании, проведение магнитных и магнитоупругих измерений, анализ полученных результатов, обобщение результатов работ в публикациях. Участие в разработке аппаратурных средств контроля.

Автором проведены все экспериментальные исследования магнитоупругих и большинства магнитных свойств изученных сталей. Создана установка для регистрации и записи полевых зависимостей дифференциальной магнитной восприимчивости при квазистатическом перемагничивании исследуемых образцов.

При непосредственном участии автора создана модель магнитного гистерезиса, проводился анализ микроструктуры исследованных сталей.

Автором лично проведена апробация модели на термообработанных и пластически деформированных образцах различных марок стали.

Микропроцессорный структуроскоп СМ-401 разработан совместно с сотрудниками фирмы ООО «Микроакустика» по техническому заданию автора и д.т.н. Биды Г.В.

В экспериментальных исследованиях магнитных свойств принимали участие аспирант Янковский П.В., к.т.н. Сташков А.Н., д.т.н. Бида Г.В.

В обсуждении полученных на различных этапах работы результатов принимал участие член-корр. РАН Горкунов Э.С.

Публикации. Результаты работы отражены в 34 публикациях. Перечень 20 основных публикаций приведен в конце автореферата.

Структура работы. Диссертация состоит из введения, четырех глав, заключения, списка цитируемой литературы и приложений. Диссертация содержит 255 страниц машинописного текста, 86 рисунков, 11 таблиц и библиографию, включающую 267 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы её цель и задачи, приведены основные положения, выносимые на защиту, и дана аннотация содержания диссертации по главам.

Проведен краткий обзор современного состояния магнитной структуроскопии как части науки о неразрушающем контроле структуры и механических свойств ферромагнитных конструкционных сталей.

Сделан вывод об отставании в развитии физических принципов и методических основ магнитной структуроскопии по сравнению с быстрым развитием другой ее составляющей – приборостроением.

В первой главе рассматривается структурная чувствительность параметров гистерезиса 90-градусных доменных границ и показывается возможность их использования для оценки величины внутренних напряжений в конструкционных ферромагнитных материалах. Среди исследованных материалов были сталь Ст.3, подвергнутая пластической деформации растяжением, термоупрочняемые стали 38ХС и 60С2А после закалки и отпуска при разных температурах, теплоустойчивая сталь 12Х1МФ, образцы, которые вырезались из подвергнутого длительной эксплуатации гиба паропровода. Используемая методика измерений, включающая в себя сочетание прилагаемых к образцу в определенной последовательности магнитного поля, статической и динамической нагрузок, позволяла получить информацию о магнитоупругой чувствительности материала, пропорциональной обратимой проницаемости 90-градусных доменных границ.

Исследования проводили на образцах типа разрывных, длиной 100 мм, имеющих сечение «рабочей» части 23 мм. Намагничивающее поле в соленоиде при измерении Нс составляло 1,2 кА/см. При измерении относительной начальной магнитной проницаемости н использовали плоский накладной феррозондовый преобразователь, фиксирующий внутреннее поле в центральной части образца. Условия измерения динамической магнитоупругой индукции были следующие: поле поляризации Н0 = 0,8 А/см, динамическое нагружение производили по синусоидальному закону с частотой f = 30 Гц и амплитудой 0т в зависимости от типа испытуемого материала, от 1,96 до 19,6 МПа. Изменение магнитного потока фиксировали индукционной катушкой, расположенной в центральной части образца.

На образцах сталей 38ХС и 60С2А экспериментально установлено (см. рис. 1), что чувствительность начальной магнитной проницаемости и, особенно, обратимой магнитоупругой индукции к процессам коагуляции карбидной фазы, происходящим при средне- и высокотемпературном отпуске, существенно выше аналогичной чувствительности коэрцитивной силы.

Показано, что причиной относительных минимумов на кривых н (Тотп) и В(Тотп) являются «дисперсионные» напряжения, связанные с коагуляцией карбидной фазы и формированием около последней структуры с повышенной плотностью дислокаций.

Рис. 1. Зависимости начальной магнитной проницаемости н, коэрцитивной силы Нс и динамической магнитоупругой индукции В от температуры отпуска: 1 - сталь 38ХС, 2 - сталь 60С2А.

Доказательство этого основано на следующем эксперименте. Известно [1], что при возрастании внешних растягивающих напряжений 0 кривая зависимости (0) железа имеет максимум при достижении величиной 0 уровня средней амплитуды внутренних напряжений, то есть при 0 0i. Следовательно, изучение и анализ подобных зависимостей для разноотпущенных образцов позволяют оценить уровень внутренних напряжений в материале и связанную с ними подвижность, прежде всего 90° ДГ. Зависимость (0), очевидно, аппроксимируется зависимостью В(0), которая поддается экспериментальному изучению. Последовательность наложения механических нагрузок и поля была следующей: размагниченный образец подвергался упругому растяжению заданной величины, затем создавалось магнитное поле и прикладывалась динамическая упругая нагрузка. При этом индукционная катушка в центре образца фиксировала изменение магнитного потока. После этого образец размагничивался, и вся процедура повторялась при другой растягивающей нагрузке. Характерный вид зависимостей В(0), полученных для образцов обеих марок стали, отпущенных при разных температурах, представлен на рис. 2б.

Рис. 2. Зависимость внутренних напряжений материала, определенных магнитоупругим методом от температуры отпуска (а) и динамической магнитоупругой индукции, от величины внешних растягивающих напряжений для образца стали 38ХС, отпущенного при 6000 С (б): 1- сталь 38ХС, 2- сталь 60С2А.

Из подобных графиков определяли 0 = , при которой В достигает своего максимального значения, и строили зависимости (Тотп) – рис. 2а. Подтверждением сделанных выводов о характере поведения внутренних напряжений при изменении температуры отпуска являются прямые рентгеновские и микроструктурные исследования, результат которых представлен на рис. 3. Из данного рисунка следует, что средний уровень напряжений, определяемый из рентгеновских исследований (кривая 3), монотонно уменьшается при увеличении температуры отпуска. С другой стороны, повышенная плотность дислокаций около включений карбидной фазы и формируемая на них замыкающая 900-градусная доменная структура приводят к относительным максимумам на кривых 1 и 2.

Для выявления закономерностей, связывающих магнитные и магнитоупругие свойства материалов, имеющих структуру феррита, с плотностью и распределением дислокаций в них,

Рис. 3. Зависимость внутренних напряжений в образцах стали 38ХС, приведенных к своим значениям при Тотп =4500С, рассчитанных по плотности дислокаций (1), определенных магнитным методом (2) и по физическому уширению дифракционной линии (3).

были исследованы образцы железа и стали Ст.3. Набор измеряемых параметров был тот же самый, что приведен выше. Динамическую магнитоупругую индукцию пересчитывали в эффективную проницаемость, определяемую обратимыми смещениями 90 – градусных доменных границ.

Расчет проводили в соответствии с [2, 3] в рамках представлений об эффективном поле

, (1)



Pages:   || 2 | 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.