авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Повышение эффективности станковна основе их диагностированияи определения виброустойчивостив рабочем пространстве

-- [ Страница 1 ] --

На правах рукописи

САБИРОВ ФАН САГИРОВИЧ

повышение эффективности станков
на основе ИХ диагностиРОВАНИЯ
и Определения ВИБРОУСТОЙЧИВОСТИ
в рабочем пространстве

Специальность 05.03.01 – «Технологии и оборудование механической
и физико-технической обработки»

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Москва 2009

Работа выполнена в ГОУ ВПО Московский государственный технологический университет «СТАНКИН»

Научный консультант: Доктор технических наук, профессор

В.С. Хомяков

Официальные оппоненты: Доктор технических наук, профессор

В.В. Агафонов

Доктор технических наук, профессор

Г.Н. Васильев

Доктор технических наук, профессор

О.В. Таратынов

Ведущее предприятие: ОАО НИАТ (г. Москва)

Защита диссертации состоится ____ декабря 2009 г. в ___ часов на заседании диссертационного совета Д 212.142.01 при ГОУ ВПО МГТУ «СТАНКИН», по адресу: 127994, Москва, ГСП-4, Вадковский пер., д. 3а

Отзывы (в двух экземплярах, заверенные печатью учреждения) просим направлять в адрес совета Д 212.142.01 при ГОУ ВПО МГТУ «СТАНКИН»

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО МГТУ «СТАНКИН»

Автореферат разослан _____ октября 2009 г.

Ученый секретарь диссертационного совета

к.т.н. Волосова М.А.

Актуальность проблемы. Современные тенденции развития машиностроения в совокупности с использованием автоматизированных станочных систем предъявляют требования к повышению производительности, точности размеров и качества обрабатываемых поверхностей деталей машин. Рост производительности сдерживается показателями динамического качества упругих систем, такими как виброустойчивость. Станкам присуща анизотропия характеристик в рабочем пространстве в силу их различной компоновки и конструкции, а также качества изготовления и сборки. Отсутствие информации о свойствах рабочего пространства вынуждает занижать режимы обработки для станков с ЧПУ, чтобы не допустить брака обрабатываемой детали при безусловной потере производительности. Проблему усугубляет и тот факт, что характеристики, связанные с производительностью и точностью, изменяются по мере физического износа станка или разрегулирования его элементов. Использовать этот огромный резерв повышения производительности пытаются многие исследователи, создавая системы адаптивной обработки, системы диагностики и мониторинга.

Недостаточность информации на этапе проектирования станочного оборудования и научно обоснованных рекомендаций, направленных на решение проблемы сбалансированности характеристик приводов и несущей системы станков, приводит к неэкономному расходованию материальных и энергетических ресурсов.

Производители станков, стремясь к максимальной прибыли, рекламируют возможности выпускаемого оборудования по точности и производительности, используя их максимальные показатели, достигаемые в отдельных областях рабочего пространства с наиболее удачными соотношениями характеристик заготовок и режущего инструмента, в то время как потребителя интересует оборудование, обеспечивающее решение всего спектра технологических задач, стоящих перед предприятием. В этой ситуации необходимо иметь инструментарий, позволяющий адекватно оценивать технологические возможности изготавливаемого и приобретаемого оборудования во всем диапазоне его рабочего пространства, сравнивая возможности различных станков по интегральным показателям. Для решения этих проблем требуются мобильные технические средства и комплекс расчетных и экспериментальных методик, позволяющих оперативно оценивать характеристики станков во всем рабочем пространстве с учетом многообразия применяемых заготовок и видов инструмента, и оценивать, таким образом, возможности станка по производительности и точности. Отмеченное выше может быть обеспечено только на основе создания научно обоснованной информационной базы знаний о динамических характеристиках станков, доступной широкому кругу специалистов, занимающихся проектированием, исследованием, эксплуатацией, ремонтом и модернизацией оборудования.



Цель работы. Повышение эффективности станков на основе их диагностирования, оценки виброустойчивости в рабочем пространстве и разработки принципов создания конструкций со сбалансированными характеристиками по мощности, моменту, жесткости и виброустойчивости.

Для реализации цели работы поставлены следующие задачи:

- разработать структуры (модели) и методы анализа технологического многофакторного пространства станка, включающего набор составляющих элементов, набор факторов, диапазоны варьирования с учетом вероятности использования в технологическом процессе обработки изделий;

- разработать методы и программно-математическое обеспечение для экспериментально-расчетной оценки динамических характеристик системы станок-приспособления-инструмент-заготовка, включающих методы исследования сложных динамических систем по частям;

- разработать модели ограничений и системы интегральных оценок производительности и точности в технологическом рабочем пространстве станка по результатам испытаний и исследований;

- разработать методы, аппаратные комплексы, программно-математичес-кое и информационное обеспечение экспериментального определения динамических характеристик, диагностирования состояния упругой системы и отдельных элементов станка с помощью импульсного и гармонического нагружения и на основе анализа вибрационных процессов;

- разработать методы экспериментального определения передаточной функции процесса резания;

- экспериментально подтвердить основные положения теоретических разработок.

Методы исследований. Теоретические исследования базируются на основных положениях технологии машиностроения, конструирования металлорежущих станков, теории колебаний и динамики станков, теории анализа случайных процессов, методах математического и компьютерного моделирования. Экспериментальные исследования проводились в лабораторных и производственных условиях с использованием станочного оборудования и современных измерительных средств. Обработка результатов экспериментов проводилась средствами вычислительной техники с применением положений математической статистики, спектрального анализа и теории планирования эксперимента.

Научная новизна работы заключается в:

- установленных теоретических и эмпирических зависимостях частотных характеристик упругих систем станков от координат рабочего пространства и определенных границах виброустойчивости в различных точках рабочего пространства станка;

- разработанных математических моделях, описывающих взаимосвязи динамических характеристик на базовых поверхностях станков (в местах установки сменных приспособлений для закрепления заготовки и инструмента) с динамическими характеристиками в зоне резания;

- разработанных алгоритмах обработки сигналов, адаптированных к применению импульсного возбуждения при диагностике упругой системы станка с целью определения динамических характеристик путем усреднения спектров по ряду выборок;

- разработанной методике идентификации характеристики процесса резания по частотной характеристике упругой системы станка и данных о предельных режимах резания без вибраций путем обеспечения одинаковых свойств замкнутой системы (устойчивость и частота возникающих автоколебаний);

- предложенной системе показателей для оценки различных конструкций и компоновок станков по производительности, точности и взаимной сбалансированности характеристик несущей системы и приводов станка, способствующих созданию оборудования без чрезмерного запаса по отдельным показателям;

- построенных математических моделях ограничений производительности и точности в технологическом рабочем пространстве станка, учитывающих мощность привода, моменты и усилия в зоне резания, параметры инструмента, режимы резания, характеристики приспособлений;

- разработанных алгоритмах диагностирования состояния отдельных элементов динамической системы станков на основе анализа виброакустических сигналов.

Практическая ценность работы заключается:

- в рекомендациях по проектированию оборудования, разработке научно обоснованных требований к характеристикам несущих систем проектируемых станков и оценки качества станков по интегральным показателям характеристик в рабочем пространстве, дающих объективную оценку качества оборудования;

- в технологических рекомендациях по выбору режимов обработки для станков с ЧПУ с учетом показателей производительности и качества обработки в различных зонах технологического рабочего пространства станка, позволяющих повысить производительность обработки и обеспечить заданное качество обработки;

- в методиках и программах определения динамических характеристик на базовых поверхностях станков при гармоническом и импульсном нагружении упругой системы, позволяющих оценивать качество приобретаемого оборудования, оперативно диагностировать его состояние при эксплуатации и выявлять резервы улучшения конструкции;

- в программно-математическом, аппаратном обеспечении и методиках диагностирования упругих систем станков, опор шпинделей, выявления дефектов и слабых узлов, позволяющих оперативно определять причины вибраций и низкой виброустойчивости станков при обработке и анализировать их вынужденные колебания.

Реализация результатов работы. Работы выполнялись в МГТУ «Станкин» в рамках хоздоговорных тем (№№ гос.рег. 76039110, 78048699, 80005590, 81014197, 81022088) и госбюджетных контрактов (№№ гос.рег. 01823048325, 01850081771, 01200804876). Результаты работы используются на станкостроительных заводах ОАО «Стерлитамак-М.Т.Е», ОАО «Красный пролетарий», в ОАО «Савеловский машиностроительный завод», в инжиниринговой компании «Pride TWL», ОАО «Дальэнергомаш», ОАО «Пензадизельмаш» и др.

Материалы диссертации в виде программ для ПК используются в учебном процессе ряда вузов РФ: МГТУ «Станкин», Тихоокеанский государственный университет, Пермский государственный технический университет, Оренбургский государственный университет, Уфимский государственный авиационный технический университет, Ульяновский государственный технический университет, Пензенский государственный университет и др.

Апробация работы. Основные положения и результаты диссертационной работы докладывались на Всесоюзных научно-технической конференциях (НТК) «Динамика станков» в Куйбышеве (1980) (1984), на международной научно-практической конференции «Научные исследования, наносистемы и ресурсосберегающие технологии в стройиндустрии» в Белгороде (2007), на Х, ХI и XII-ой научных конференциях МГТУ «Станкин» и «Учебно-научного центра математического моделирования МГТУ «Станкин» - ИММ РАН по математическому моделированию и информатике (2007, 2008, 2009), на ХХ-ой международной НТК по современным проблемам машиноведения в ИМАШ РАН (2008), на международной НТК «Информационные средства и технологии» в Москве (2007), на 6-й международной НТК «Проблемы качества машин и их конкурентоспособности» в Брянске (2008), на международной НТК «Оптимизация процессов резания, разработка и эксплуатация мехатронных станочных систем» в Уфе (2009), на международном Российско-Китайском Симпозиуме «Современные материалы и технологии» в Хабаровске (2009) и многих других.

Публикации. По теме диссертации опубликовано 72 печатные работы, в том числе 16 публикаций в изданиях, рекомендованных ВАК, 4 авторских свидетельства, 3 свидетельства на программы для ЭВМ.

Структура и объем работы. Работа состоит из введения, шести глав, заключения, списка литературы (192 наименования) и приложения. Общий объем диссертации 255 страниц, включая 117 рисунка и 19 таблицы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность проблемы обеспечения динамического качества станочного оборудования, оказывающего существенное влияние на производительность и качество обработки (точность формы и состояние поверхностного слоя), а также актуальность проблемы диагностирования технического состояния станков. Изложены основные положения, выносимые на защиту.





В первой главе дан анализ состояния проблемы изменяемости показателей качества динамической системы металлорежущего станка в процессе эксплуатации и непостоянства его характеристик в рабочем пространстве. Эти показатели определяют виброустойчивость и производительность при различных условиях обработки. Обоснована применимость расчетно-экспериментальных методов определения динамических характеристик несущей системы станка и диагностирования его технического состояния.

Современные исследования динамики станков базируются на основных положениях, разработанных В.А. Кудиновым, который ввел представление о замкнутой динамической системе станка, включающей эквивалентную упругую систему и рабочие процессы. Фундаментальные исследования несущих систем, подвижных стыков и динамических характеристик выполнены Д.Н. Решетовым, В.В. Каминской, З.М. Левиной, В.Э. Пушем, B.C. Хомяковым, Н.А. Кочиневым, Ю.Н. Санкиным и другими учеными.

Вопросы анализа компоновок станков и характеристик в рабочем пространстве рассмотрены в работах таких ученых, как Ю.Д. Врагов, О.И. Аверьянов, В.С. Хомяков, А.Л. Воронов, Ю.И. Городецкий, Б.М. Бржозовский, Ю.В. Кирилин, В.В. Агафонов, Г.В. Маслов и др.

Расчеты выходной точности станка с учетом влияния элементов технологической системы приведены в работах В.В. Бушуева, Б.М. Базрова, В.В. Каминской, Д.Н. Решетова, В.Т. Портмана и др. Вопросам надежности, состояния основных элементов станка, изменяющегося с течением времени, посвящены фундаментальные работы А.М. Дальского, А.С. Проникова, а диагностике инструмента и оборудования - работы С.Н. Григорьева, В.А. Синопальникова, М.П. Козочкина и др. Влияние процесса резания и режущего инструмента на работоспособность станка рассмотрено в работах И.Г. Жаркова, В.К. Старкова, Б.М. Бржозовского, В.Ф. Безъязычного, В.Л. Заковоротного, В.А. Гречишникова, Ю.Е. Петухова и др.

Большой вклад в решение перечисленных проблем внесли зарубежные ученые H. Opitz, M. Weсk, K. Teipel, M.M. Sadek, W.A. Knight, S.A. Tobias, W. Fishwick, M. Polacek, И. Тлусты и др.

При испытаниях адекватная оценка работоспособности любой машины может быть сделана только на основе глубокого анализа тех условий, в которых машине предстоит работать. Для универсального металлорежущего станка условия эксплуатации могут быть весьма разнообразны и зависят от большого количества факторов, определяющих границы работоспособности. Поэтому исследователь должен быть вооружен методологией, позволяющей ему на основе информации о режимах работы испытываемого станка выбрать условия испытаний и критерии оценки. При решении проблемы использовано понятие многофакторного технологического рабочего пространства, которое включает не только геометрическое пространство, но и характеристики оснастки, режущего инструмента и обрабатываемых деталей, определяющих процесс обработки.

В работах Ю.Д. Врагова используется понятие рабочего пространства компоновки станка, внутри которого рассматриваются статические деформации и нагрузки, связанные геометрическими соотношениями. Такое представление полезно при сравнительном анализе компоновок при проектировании. При испытаниях роль динамических деформаций узлов, расположенных в рабочем пространстве весьма велика и не может игнорироваться.

Технологическим рабочим пространством (РП) станка предложено называть многофакторное пространство, объединяющее подпространства заготовки, режущего инструмента и приспособлений для их закрепления при возможных положениях подвижных узлов станка, несущих установочные места для закрепления этих приспособлений. Особенностью этого РП является его заполненность инерционно-диссипативно-упругими элементами, силовая нагруженность и наличие процесса резания, которые определяются многообразием условий обработки деталей на станке. Подпространства приспособлений, инструмента и детали, а также подпространство резания будем называть элементами РП станка. Разбиение РП на элементы позволяет исследовать его по частям с последующим объединением в единую систему. Различные подходы к исследованию сложной динамической системы станка по частям использовались в работах В.С. Хомякова, Е.В. Хлебалова, Н.А. Кочинева, А.И. Камышева, С.А. Терентьева, А.В. Бычковой, Э.А. Курдгелия, В.М. Чуприны и других, в которых расчетная модель упругой системы станка представлялась состоящей из основной и нескольких связанных подсистем. Решая системы уравнений для каждой подсистемы и описывая уравнения связи подсистем, определяют динамические характеристики единой динамической системы.

Однако в упомянутых работах используются расчетные характеристики как для основной системы, так и для подсистем. В этих моделях использование экспериментальных характеристик подсистем не представлялось возможным.

Проведенный анализ работ показал, что используемые в настоящее время методики расчета параметров качества обработки деталей не всегда дают удовлетворительный результат, поскольку не полностью учитывают влияние сложной многокоординатной упругой системы станка на статическую и динамическую жесткость технологической системы станок-приспособления-инструмент-заготовка и практически не учитывают непостоянство характеристик в рабочем пространстве станка.

Сложность динамических расчетов упругих систем станков определяется многомерностью модели и неопределенностью упруго-диссипативных параметров. При выполнении динамических расчетов приходится сталкиваться с ситуацией, когда из-за недостаточности экспериментальных данных модель получается неадекватной, либо идти на упрощение модели, что снижает точность результатов. Следовательно, необходима методология, позволяющая быстрее и точнее оценивать характеристики в РП, заключающаяся в разумном сочетании экспериментального и расчетного подхода к оценке характеристик и диагностированию состояния упругой системы станка.

На основании проведенного анализа работ сформулированы цели и задачи, изложенные выше.

Вторая глава посвящена разработке моделей производительности и точности в рабочем пространстве станков.

Основой для анализа использования РП при эксплуатации станка является анализ обрабатываемых деталей в пределах подпространства резания. При экспериментальном исследовании непрерывные функции (поля) производительности в подпространстве резания заменяются на дискретные (зонные). Внутри зоны поля считаются неизменными с заданной степенью точности . Величина определяет число зон подпространства резания и размеры x зон вдоль координаты факторного пространства.

Элементы технологического факторного рабочего пространства представлены в табл. 1.



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.