авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 | 5 |

Повышение подвижности быстроходной гусеничной машины путем автоматизации системы управления криволинейным движением

-- [ Страница 1 ] --

На правах рукописи

Кондаков Сергей Владимирович

ПОВЫШЕНИЕ ПОДВИЖНОСТИ БЫСТРОХОДНОЙ ГУСЕНИЧНОЙ МАШИНЫ ПУТЕМ АВТОМАТИЗАЦИИ СИСТЕМЫ УПРАВЛЕНИЯ КРИВОЛИНЕЙНЫМ ДВИЖЕНИЕМ

Специальность 05.05.03 – «Колесные и гусеничные машины»

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Москва

2009

Работа выполнена в Южно-Уральском государственном университете

(г. Челябинск).

Официальные оппоненты: доктор технических наук, профессор,

________________________________;

доктор технических наук, профессор

________________________________;

доктор технических наук, профессор

________________________________.

Ведущее предприятие

Защита состоится __________ 2009 г., в _____ часов, на заседании диссертационного совета Д 212.141.07 в Московском государственном техническом университете им. Н.Э. Баумана по адресу 107005, г. Москва, 2-я Бауманская ул., д.5.

Отзывы в двух экземплярах, заверенных печатью, просим направлять по указанному адресу.

С диссертацией можно ознакомиться в библиотеке Московского государственного технического университета им. Н.Э. Баумана

Автореферат разослан _______________2009 г.

Ученый секретарь

диссертационного совета

д.т.н., профессор Гладов Г.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Быстроходные гусеничные машины (БГМ) предназначены для решения боевых задач в условиях движения по пересеченной местности под огнем противника. К главным тактико-техническим характеристикам БГМ относят огневую мощь, броневую защиту и маневренность. Показателем маневренности является средняя скорость движения, которая зависит от совершенства конструкции трансмиссии и механизма поворота. Моторно-трансмиссионные установки (МТУ) современных быстроходных гусеничных машин состоят из двигателей внутреннего сгорания с удельной мощностью до 20 кВт/т, двухпоточных гидромеханических трансмиссий с планетарными коробками передач и бесступенчатыми механизмами поворота на базе гидрообъемных передач (ГОП). Среди отечественных машин следует отметить бронемашину пехоты БМП-3, имеющую двухпоточную гидромеханическую трансмиссию с гидрообъёмным механизмом поворота. Максимальная скорость движения указанных машин составляет 80…100 км/ч, бесступенчатый механизм поворота существенно снижает потери скорости на криволинейных участках. Повышение удельной мощности двигателей, возможность бесступенчатого регулирования радиуса поворота выдвинуло на первый план проблему управляемости БГМ.

Существующие концепции и методы исследования движения БГМ позволяют вмешиваться в процесс управления с учетом изменяющихся параметров. Автором выдвинута научная гипотеза о необходимости моделирования процесса криволинейного движения БГМ с учетом основных нелинейностей грунта и гидрообъёмной передачи, которая позволит определить новые законы управления движением, направленные на реализацию максимально возможной средней скорости за счет движения «на границе заноса». Имитационное моделирование криволинейного движения позволило отработать новые законы управления трансмиссией, механизмом поворота и тормозами с целью увеличения точности траектории, предотвращения заноса, увеличения средней скорости движения. На базе проведенных теоретических исследований внесены изменения в конструкции машин, защищенные авторскими свидетельствами. Разработаны новые положения теории поворота гусеничных машин, отражающие специфику движения на больших скоростях. Изучены динамические процессы поворота, определены наиболее сложные для гидрообъёмного механизма режимы, отработаны алгоритмы управления двигателем, насосом ГОП, тормозами в условиях движения на границе заноса, разработаны конструкции агрегатов, работающих в повороте параллельно ГОП (гидромуфта, блокировочный фрикцион, гидроаккумулятор).

Целью диссертационной работы является повышение подвижности быстроходной гусеничной машины на переходных и установившихся режимах криволинейного движения путем автоматизации системы управления криволинейным движением. Разработка количественного критерия оценки управляемости в виде соотношения кривизны траектории задаваемой штурвалом и реализуемой на местности. Выработка новых законов управления движением на базе дополнительного регулирования насоса ГОП, подачи топлива и торможения забегающего борта при угрозе заноса машины, торможения отстающего борта при перегрузке ГОП по давлению для увеличения точности управления поворотом, предотвращения заноса и роста средней скорости движения машины.

Объект исследования. Быстроходная гусеничная машина с механической или гидродинамической трансмиссией и бесступенчатым механизмом поворота.

Предмет исследования. Закономерности управления двигателем, трансмиссией, механизмом поворота и тормозами, обеспечивающие прохождение криволинейных участков трассы с наибольшей точностью и скоростью.

Методы исследования. Имитационное моделирование криволинейного движения с учетом нелинейностей характеристик грунта и гидрообъемной передачи. Оптимизация законов дополнительного регулирования насоса ГОП независимо от положения штурвала на базе количественного критерия оценки управляемости по кривизне траектории. Моделирование торможения двигателем и разделенной по бортам тормозной системы.

Для достижения указанной цели необходимо решить следующие теоретические и практические задачи:

  1. Развить вопросы теории криволинейного движения БГМ на границе заноса на базе комплексного имитационного математического моделирования движения, моторно-транмиссионной установки и системы управления криволинейным движением, отличающегося введением автоматизированного управления насосом гидрообъёмного механизма поворота, двигателя и тормозов с целью повышения точности управления, предотвращения заноса и увеличения средней скорости движения.
  2. Выработать критерий количественной оценки точности управления поворотом;
  3. Использовать возможность дополнительного, независимого от штурвала, регулирования насоса ГОП механизма поворота, с целью повышения точности управления;
  4. Разработать новые законы управления двигателем, гидрообъемным механизмом поворота и тормозами на базе обратной связи по реализуемой на местности траектории;
  5. Определить возможности увеличения средней скорости движения быстроходных гусеничных машин, улучшения их управляемости и устойчивости при реализации новых законов управления двигателем, насосом ГОП механизма поворота и раздельными по бортам тормозами на базе предложенного количественного критерия управляемости;
  6. Выработать рекомендации по совершенствованию алгоритмов, систем управления и конструкций механизмов поворота некоторых машин.

Научная новизна диссертационной работы:

  1. Комплексная имитационная математическая модель криволинейного движения быстроходной гусеничной машины, моторно-трансмиссионной установки и системы управления криволинейным движением, отличающаяся введением автоматизированного управления насосом гидрообъёмного механизма поворота, двигателя и тормозов с целью повышения точности управления, предотвращения заноса и увеличения средней скорости движения.
  2. Критерий оценки управляемости в виде соотношения кривизны траектории задаваемой штурвалом Кт и реализуемый на местности Кф позволяет количественно оценить точность выполнения маневров гусеничной машиной. Кривизна вычисляется как отношение угловой скорости корпуса относительно вертикальной оси, проходящей через центр тяжести машины, к линейной скорости центра тяжести машины, направленной вдоль продольной оси.
  3. Закономерности управления механизмом поворота в виде дополнительного регулирования насоса гидрообъёмной передачи, что позволяет минимизировать ошибку управления по кривизне траектории до 3-5%. Оптимизирован закон дополнительного регулирования наклонной шайбы ГОП, обеспечивший приемлемое перерегулирование и быстродействие системы управления поворотом;
  4. Алгоритмы управления двигателем, тормозом забегающего борта при угрозе заноса и тормозом отстающего борта при перегрузке ГОП по давлению;
  5. Комплекс мероприятий обеспечивает динамическую устойчивость криволинейного движения.

Практическая ценность и реализация полученных результатов. На основании имитационного моделирования получили теоретическое обоснование некоторые решённые ранее инженерные задачи. Появилась возможность решать множество смежных задач, связанных с процессом поворота:

  1. Для БМП-3 отработаны новые законы управления трансмиссией при криволинейном движении, включающие в себя опцию дополнительного регулирования насоса ГОП механизма поворота по отклонению кривизны траектории на местности от задаваемой штурвалом; опцию торможения двигателем при угрозе заноса; опцию торможения забегающего борта при угрозе заноса; опцию торможения отстающего борта при перегрузке ГОП по давлению, обеспечивающие точность управления поворотом и максимальную среднюю скорость движения без заноса;
  2. На базе легкого тягача МТЛБ изготовлен и испытан опытный образец быстроходной гусеничной машины с двухпоточной гидромеханической трансмиссией и гидрообъёмной передачей в механизме поворота, при экспериментальных исследованиях опытного образца доказана достоверность математического моделирования;
  3. Для опытного изделия гусеничной машины предложены конструкции блокировочного фрикциона гидрообъёмной передачи, гидроаккумулятора и гидромуфты механизма поворота, улучшающие динамику входа в поворот;
  4. Предложен способ управления криволинейным движением и механизм его реализации, обеспечивающий движение с «максимальной по заносу» скоростью;

Новизна технических решений подтверждена 7 авторскими свидетельствами и 1 патентом на изобретения, 1 патентом на полезную модель.

Апробация диссертационной работы. Результаты работы обсуждены на научно-технических конференциях в Курганском государственном техническом университете, Курган (1998, 2000, 2003, 2006); в Омском танковом институте, Омск (2002, 2008); в НИИ АТТ, Челябинск (2002 – 2008); на выездном заседании секции по машиностроению ВАК РФ в Снежинске (2003); в ОАО «ЧТЗ», Челябинск (2002, 2004, 2006, 2007), на ежегодных научно-технических конференциях ЧПИ-ЧГТУ-ЮУрГУ (1981–2008), на научно-технической конференции, посвященной 70-летию Уралвагонзавода, Н.Тагил (2006), в МВТУ им.Баумана (2007, 2008).

Основные положения, выносимые на защиту:

  1. Комплексная имитационная математическая модель криволинейного движения быстроходной гусеничной машины, моторно-трансмиссионной установки и системы управления криволинейным движением, отличающаяся введением автоматизированного управления насосом гидрообъёмного механизма поворота, двигателя и тормозов с целью повышения точности управления, предотвращения заноса и увеличения средней скорости движения.
  2. Критерий количественной оценки управляемости криволинейного движения гусеничной машины в виде соотношения кривизны траектории, задаваемой штурвалом и реализуемой на местности;
  3. Возможность дополнительного, независимого от штурвала, регулирования подачи насоса ГОП и её использование для улучшения управляемости машины в повороте;
  4. Законы управления двигателем, гидрообъёмным механизмом поворота и тормозами при криволинейном движении с целью предотвращения заноса и сокращения периодов перегрузки ГОП по давлению на базе критерия количественной оценки управляемости;
  5. Все мероприятия по улучшению управляемости основаны на сохранении статической или динамической устойчивости, что раньше было возможно только при управлении высококлассным механиком-водителем;
  6. Результаты математического эксперимента по оценке роста средней скорости управляемого криволинейного движения быстроходной гусеничной машины «по границе заноса» при выполнении стандартных маневров: «переставка», движение по кругу, «змейке», в различных дорожных условиях «микст» и по среднестатистической трассе, включающей различные опасные участки;
  7. Реализация новых опций управления поворотом для машин с гидромеханической трансмиссией и приводом насоса ГОП от двигателя (схема «Леопарда-2», БМП «Мардер», БМП-3), обеспечивающих сохранение траектории при смене грунта или росте сопротивления движению.

Внедрение результатов работы. Результаты работы использованы:

– ОАО «Курганский машиностроительный завод» при проектировании транспортной машины ТМ-130;

– ОАО «Челябинский тракторный завод» при проектировании перспективного промышленного трактора-бульдозера с гидростатической трансмиссией;

– ФГУП «Уральское конструкторское бюро транспортного машиностроения», г. Н.Тагил при модернизации системы управления криволинейным движением гусеничной машины;

– Курганским государственным техническим университетом и Южно-Уральским государственным университетом при подготовке инженеров по специальности 190202 «Многоцелевые гусеничные и колесные машины» в курсе «Теория движения».

Достоверность полученных результатов подтверждается испытаниями опытного образца гусеничной машины с гидрообъёмным механизмом поворота, проведенными в ЮУрГУ совместно с ОАО «ЧТЗ» и ФГУП «Уральское конструкторское бюро транспортного машиностроения», г. Н.Тагил, в 2001 и 2005 гг.; экспериментальными исследованиями быстроходных гусеничных машин, опубликованными в независимых источниках.

По теме диссертации опубликовано 28 печатных работ, в том числе монография, 10 статей в центральных журналах, получено 7 авторских свидетельств и 1 патент на изобретения, 1 патент на полезную модель.

Структура и объем работы. Диссертация изложена на 297 страницах машинописного текста, включая 170 рисунков и 22 таблицы, состоит из введения, шести глав, заключения, основных выводов, списка литературы, включающего 241 наименование, и приложений.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследования по управляемости быстроходной гусеничной машины с бесступенчатым гидрообъемным механизмом поворота при переходных режимах криволинейном движении.

В первой главе диссертации рассмотрено современное состояние вопроса управляемости и устойчивости, математического моделирования криволинейного движения быстроходных гусеничных машин. Вопросами устойчивости и управляемости движения быстроходных гусеничных машин в разное время занимались А.П. Крюков, А.А. Благонравов, О.Н. Брилев, Ю.А. Конев, В.М. Антонов, В.И. Красненьков, В.В. Егоркин, Я.Е. Фаробин, В.А. Колесов, В.В. Гуськов, А.Ф. Опейко, Г.О. Котиев, С.А. Бекетов, В.Б. Держанский и другие ученые.

Благонравов А.А. ввел понятие статической устойчивости, «мерой которой является разность тангенсов углов наклона касательной к кривой поворачивающего момента, как функции кривизны, и касательной к статической характеристике». Указал, что движение за границей статической устойчивости вплоть до границы бокового заноса «возможно только при непрерывном и соответствующем регулировании поворачивающего момента механиком-водителем». Устойчивость поворота – это «…чисто динамическая характеристика, связанная в первую очередь с тягово-сцепными свойствами гусеницы с грунтом». Здесь же отмечено, что «…устойчивость и управляемость – два качества танка, которые находятся в определенной взаимосвязи. Управляемость – это способность адекватно реагировать на управляющее воздействие».

В работах Красненькова В.И. рассмотрены статическая и динамическая устойчивость и переходные реакции на управление в линейной и нелинейной постановке. Критерий управляемости по переходной функции «рывок руля». Исследование устойчивости и управляемости проведено на основе анализа системы дифференциальных уравнений, описывающих криволинейное движение БГМ на плоскости, определены причины возникновения статической неустойчивости при движении без бокового заноса.

В развитие подхода Красненькова В.И. оценки управляемости по переходным реакциям в работах Благонравова А.А и Держанского В.Б. использована математическая модель с включением дифференциальных уравнений двигателя и ГОП в механизме поворота, предложен критерий управляемости в виде частной производной угловой скорости поворота по изменению управляющего воздействия – поворота штурвала. На основании разработанного критерия управляемости авторам удалось создать алгоритм автоматической системы управления движением, «который в режиме управления угловой скоростью … обеспечивает точность, а в режиме экстренного торможения – адаптивный поиск экстремума замедления».

В трудах ВА БТВ в качестве критерия управляемости криволинейного движения использовано отношение частот вращения БГМ относительно вертикальной оси, проходящей через ЦТ машины: фактической и теоретической, рассчитанной по частотам вращения ведущих колёс. Опыт работы с частотами вращения корпуса, принятыми в качестве критерия управляемости, выявил недостатки подхода: водитель в процессе управления БГМ не в состоянии следить за частотой вращения корпуса; разница (или отношение) фактической и рассчитанной по ведущим колёсам частота вращения корпуса не берёт во внимание потери внутри гидрообъёмного привода механизма поворота, поэтому оценивает, строго говоря, не управляемость, а устойчивость движения. Эти положения не позволили количественно оценивать управляемости, а только качественно.

В работах, посвященных исследованию режимов движения БГМ, так или иначе, указаны основные приемы вождения, обеспечивающие устойчивость и управляемость движения.

На основе анализа литературных источников определено взаимоотношение критериев устойчивости и управляемости: устойчивость является необходимым, но недостаточным условием управляемости. При криволинейном движении приоритет должен отдаваться сохранению траектории.

Современные бесступенчатые МП не всегда обеспечивают устойчивость и управляемость движения БГМ. 1) Недостаточная мощность ГОП МП приводит к потере управляемости на тяжелых грунтах и при интенсивном маневрировании – и в том и в другом случае срабатывают предохранительные клапана ГОП, БГМ начинает неадекватно выполнять команды, появляется излишнее, непривычное водителю запаздывание. 2) При интенсивном маневрировании и достаточной мощности ГОП МП БГМ легко оказывается за границами динамически устойчивого движения = заноса.

Итак, устойчивость и управляемость определены следующим образом:

устойчивость – это способность системы возвращаться в исходное состояние после снятия внешнего возмущения, для БГМ – способность вернуться к прямолинейному движению или прежнему криволинейному при возвращении штурвала поворота в исходное положение;

управляемость – это способность БГМ реализовать кривизну траектории движения, заданную положением штурвала управления поворотом.



Pages:   || 2 | 3 | 4 | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.