авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:     | 1 || 3 | 4 |   ...   | 6 |

Научное обоснование и разработка комплекса средств механизации для обеспечения качества углепродукции

-- [ Страница 2 ] --

В четвертой главе исследованы факторы, влияющие на потери качества угля при его перевозке в полувагонах железнодорожным транспортом и разгрузке, а также при хранении на временных складах. Представлена методика расчета, которая позволяет оценить площади складов при хранении угля в буртах или в контейнерах с разными высотами буртов, ярусами установки и типами контейнеров.

В пятой главе определены факторы, влияющие на потери угля при его перевозке автомобильным транспортом. Разработаны технические решения, позволяющие адаптировать кузов автосамосвала к перевозке сыпучих грузов с различным объемным весом. Представлены конструкции специализированных автотранспортных средств-контейнеровозов.

В шестой главе рассмотрены особенности речного транспорта. Показаны преимущества использования новой технологии с точки зрения оперативности и безопасности перевозок. Предложена математическая модель оценки степени загрязнений, происходящих при перевозке угля навалом и открытом способе хранения.

В седьмой главе определены основные факторы, влияющие на процесс усреднения углей на установке гравитационного типа. Предложены варианты устройств по усреднению углей. Изложены рекомендации по механизации работ на складах.

В восьмой главе отражена экономическая эффективность проекта на всех этапах предлагаемой технологии.

Заключение содержит основные выводы и рекомендации по результатам выполненной работы.

В приложении приведены материалы о реализации основных методологических и технических решений, предложенных в диссертации.

1. Значение и теоретические предпосылки

создания комплексов оборудования для получения

высококачественной углепродукции

Перспективные ресурсосберегающие технологии, направленные на улучшение качества угля и повышение стабильности его характеристик, целесообразно основывать на следующих принципах: малооперационность технологического процесса получения ценных и энергонасыщенных углепродуктов, сохранное (без потерь качества и количества), экономичное и экологичное перемещение полученного на разрезе углепродукта в места потребления высокомеханизированными системами транспортирования и временного хранения. Этим принципам может соответствовать использование специализированных контейнеров во всех звеньях механизации технологического комплекса разреза.

В результате изучения состояния проблемы, обобщения теории и практики по теме диссертации не удалось выявить исследований по применению контейнерного способа доставки углепродукции, обеспечивающего неизменность ее качественных и количественных показателей при доставке потребителю.

Существенный вклад в разработку теоретических основ комплексного использования и обеспечения качества добываемого полезного ископаемого внесли А.А. Абрамов, С.П. Артюшин, З.Ш. Беринберг, И.С. Благов, В.Д. Буткин, В.Ф. Бызов, С.И. Гройсман, Н.Х. Загиров, Л.И. Кантович, А.П. Красавин, Г.Г. Ломоносов, Д.Е. Махно, Н.В. Мельников, И.В. Пономарев, В.В. Ржевский, Н.Н. Страбыкин, К.Н. Трубецкой, П.И. Томаков, Т.Г. Фоменко, С.Э. Фридман, О.К. Щербаков.



Потери полезного ископаемого при его транспортировании и хранении изучались С.П. Амельчуговым, В.С. Веселовским, Е.И. Глузбергом, В.В. Жучковым, В.М. Ивановым, Я.С. Киселевым, С.И. Протасовым, И.В. Радовицким, В.И. Саранчуком, Ж.К. Текеновым, Л.П. Хитриным, А.И. Хрисанфовой, А.В. Швыдкиным.

Стабилизацией качества добытого угля занимались А.В. Баскин, Н.Г. Бедрань, Н.М. Белик, Ф.Г. Грачев, В.В. Демкин, В.А. Земляков, А.И. Карякин, И.П. Крапчин, М.Ф. Кундым, А.Р. Молявко, В.П. Немчинов, Н.А. Самылин, С.А. Саракисянц, Н.В. Федоров, Р.Р. Шаль, Л.П. Шупов.

Одним из продуктов переработки рядового угля и самым простым по технологическому процессу получения является сортовой уголь, который рассматривается как начальный уровень ресурсосберегающей технологии. При этом большое значение имеет оптимальное расположение перерабатывающего оборудования, которое может быть установлено в местах добычи, пунктах пересечения транспортных коммуникаций и у потребителя.

Пусть при сортировке угля производится К его сортов, которые поставляются n потребителям. Обозначим mi j – массу угля iго сорта, поставляемого jму потребителю за определенный отрезок времени Т (mi j 0). Тогда – масса сортового угля, поставляемого jму потребителю за время Т, а – масса всего сортового угля, производимого за время Т. Принимаем, что сортировка угля – безотходное производство, т.к. подрешетный материал – это сырье для брикетирования или топливо для котлов с пылевидным сжиганием. Тогда масса доставляемого для сортировки рядового угля за время Т тоже равна m.

Пусть Sj – стоимость перевозки единицы массы угля (далее просто стоимость перевозки) от пункта сортировки до jго потребителя, j = 1, 2, …, n, S0 – стоимость перевозки от разреза, поставляющего рядовой уголь, до пункта сортировки. Тогда затраты на перевозку сортового угля от пункта сортировки до jго потребителя равны mj · Sj, а затраты на перевозку всего сортового угля от пункта сортировки равны . Учитывая затраты на перевозку рядового угля от разреза до пункта сортировки, получаем целевую функцию L суммарных затрат

, (1)

которую необходимо минимизировать для определения оптимального места расположения пункта сортировки угля.

Все способы перевозки угля из пункта А в пункт В обозначим GАВ. Стоимость S перевозки зависит от способа перевозки, поэтому стоимость перевозки по конкретному способу обозначим Sg. Если же способ перевозки не оговаривается, то под стоимостью S перевозки понимается наименьшая ее стоимость среди всех возможных способов перевозки, т.е.

.

Упомянутые выше стоимости перевозок S0, S1, …, Sn определяются именно так. Способ перевозки, которому соответствует наименьшая стоимость, считается оптимальным.

Сортовой уголь суммарной массой mj, поставляемый jму потребителю, перевозится сначала от места добычи А до пункта сортировки в составе рядового угля и затем от пункта сортировки до потребителя Вj некоторым способом со стоимостью перевозки . Следовательно,

, (2)

где наименьшая стоимость достигается на оптимальном способе перевозки из пункта А в Вj. Если расположить пункт сортировки в места добычи А, то затраты на перевозку сортового угля потребителям составят

. (3)

Из формул (1)–(3) следует неравенство

L' L,

которое доказывает, что минимум целевой функции (минимум затрат на перевозку угля потребителям) отмечается при расположении пункта сортировки в месте добычи (на разрезе). При этом расположение его непосредственно на добывающем оборудовании или на мобильном шасси в технологической цепочке с добывающим оборудованием выгоднее устройства отдельного сортировочного пункта. Это объясняется тем, что дополнительные затраты на перемещение сортировочного оборудования вместе с добывающим значительно меньше затрат на перегрузку, т.к. произведение массы сортировочного оборудования на его перемещение меньше произведения массы добытого угля на его перемещение только при выгрузке. Учет затрат на другие операции, связанные с выгрузкой, погрузкой и хранением угля в отдельном пункте сортировки, завершает доказательство.

Указанные решения могут быть реализованы при работе любого выемочно-погрузочного оборудования.

Рассмотрим машины непрерывного действия. Учитывая особенности карьерного фонда, изобилующего разрезами малой и средней мощности, а также то, что на разрезах с большой производственной мощностью имеются маломощные или тонкие пласты, которые ввиду несовершенства технологии зачастую отрабатываются в отвал, весьма перспективным становится более широкое применение экскаваторов фрезерного типа, в том числе и стреловых (пат. РФ № 2315866). Опыт эксплуатации экскаватора КСМ-2000РМ на разрезе Талдинский показал, что эти машины обеспечивают полноту выемки полезного ископаемого. Поэтому предлагается использовать экскаватор типа КСМ вместе с другими горными машинами в составе горного карьерного комплекса (ГКК) по добыче и переработке угля. Важной особенностью экскаваторов фрезерного типа является также выход «нужного» гранулометрического состава, наиболее пригодного для переработки.

На рис. 1 изображен экскаватор типа СМ, работающий в технологической цепочке с перерабатывающим оборудованием. Исходя из специфики конкретных разрезов и требований рынка, возможно дополнительное включение или замена одного мобильного перерабатывающего оборудования на другое.

Показанная на рис. 1 технологическая цепочка лишь схема. Конечно, не на каждом разрезе горно-геологические условия дают возможность разместить вслед за экскаватором шлейф перерабатывающего оборудования. Однако, во-первых, перерабатывающее оборудование на мобильном шасси можно устанавливать вблизи добычного участка, связывая его с экскаватором, например межуступным перегружателем, и перемещать это мобильное оборудование по мере продвижения фронта работ.

Во-вторых, компактность и относительно малая материалоемкость (рис. 2) экскаваторов фрезерного типа могут послужить основой для создания ГКК по добыче и переработке угля на одном шасси.

 Комплекс карьерного горного-13

Рис. 1. Комплекс карьерного горного оборудования в забое (пат. РФ № 2078928): 1 – экскаватор; 2 – сепарационно-сортировочный агрегат; 3 – упаковочно-

брикетный участок; 4 – контейнеры

 График отношения-14

Рис. 2. График отношения производительности Q, м3/ч, к массе m, т, некоторых экскаваторов непрерывного действия: 1 – СМ 1900; 2 – СМ 2600; 3 – СМ 3000; 4 – СМ 3600; 5 – СМ 4200; 6 – КСМ 2000; 7 – КСМ 2000РМ; 8 – КСМ 4000; 9 – EASI-1224 «HURON»; 10 – 5Е «VOEST ALPINE»; 11 – ЭРГВ-630.9/05(Ц); 12 – ЭР-630.10,5/1(Г); 13 – ЭРП-1250.16/1(Г); 14 – ЭРП-1250.16/1(Г); 15 – ЭР-1250.17/1ОЦ; 16 – ЭРП-2500.21.4/1; 17 – ЭРШРД-5250.22/2; 18 – ЭРШРД-5000.50/3; 19 – ЭРШР-5000.40/7; 20 – SRS(K)-470; 21 – SRS(K)-2000; 22 – SRS-2400; 23 – KU-300;

24 – KU-800; 25 – SchRS-1500

На рис. 3 представлен вариант ГКК по добыче и переработке угля. Грузоподъемное оборудование обеспечивает перегрузку с ГКК на транспортные средства груженых и в обратном направлении порожних контейнеров, а также необходимых для работы ГКК расходных материалов, например связующего для брикетного участка. На ГКК предусмотрена также отгрузка рядового угля без переработки.

Рис. 3. Горный карьерный комплекс для экскавации угля с получением высококачественных углепродуктов (пат. РФ № 2083839): 1 – экскавационное оборудование; 2 – сортировочный блок; 3 – блок брикетирования; 4 – грузоподъемное оборудование; 5 – контейнеры

Принципиальной основой создания ГКК является блочно-модуль- ный способ его построения с возможностью установки дополнительных перерабатывающих блоков или замены отдельных модульных блоков на другие для оперативного реагирования на изменение конъюнктуры рынка, исходя из индивидуальных потребностей заказчика.

Приведенная схема размещения перерабатывающего оборудования вблизи добычного участка применима и для его взаимодействия с экскаватором цикличного действия.

Для исключения потери качества сортового угля при его перевалке с одного вида транспорта на другой предлагается отгружать уголь в специализированные контейнеры. Возможно как минимум два варианта размещения контейнеров в момент погрузки. Первый вариант – контейнеры находятся на самом карьерном мобильном сортировочном агрегате, куда подаются с помощью его грузоподъемного оборудования либо другого мобильного грузоподъемного оборудования, например погрузчика. Второй вариант – контейнеры расположены на транспортном средстве.





Рис. 4. Карьерный мобильный сортировочный агрегат (пат. РФ № 2119015): 1 – ходовое оборудование; 2 – привод; 3 – поворотная платформа; 4 – кабина; 5 – приемный бункер; 6–10 – конвейеры; 11 – плуг-отделитель; 12 – грохот; 13 – лоток; 14–17 – бункеры-распределители; 18 – реверсивный конвейер; 19 – контейнеры; 20 – питатель; 21 – весы; 22 – кран;

23 – компрессор

Рис. 5. Сортировочный модульный блок на низкорамном полуприцепе-тяжеловозе ЧМЗАП-9399: 1 – конвейер погрузки сортового угля одного класса крупности; 2 – конвейер подрешетного материала; 3 – конвейер погрузки сортового угля другого класса крупности; 4 – конвейер сброса нега-

баритов; 5 – сортировочный модульный блок; 6 – автомобиль-тягач

По первому варианту предлагаемый карьерный мобильный сортировочный агрегат (КМСА), принципиальная схема которого представлена на рис. 4, работает в технологической цепочке с добычным экскаватором, передвигаясь вместе с ним по уступу. Блочно-модульное сортировочное оборудование можно установить на автомобиль, полуприцеп (рис. 5) или прицеп, тогда контейнеры не располагаются на КМСА. По варианту два контейнеры находятся на других транспортных средствах.

В процессе сортировки выделяется уголь двух классов крупности и отсев. Для удаления негабаритных кусков (не более 5 % добычи) с поля сортировочной установки используется ленточный конвейер 4 (рис. 5), расположенный в задней части сортировочной установки. С конвейера уголь сбрасывается на поверхность рабочей площадки, зачищается бульдозером и повторно экскавируется.

Концепция создания КМСА была реализована со шнековым грохотом ГШ-1000 на базе прицепа-тяжеловоза ЧМЗАП-5208 грузоподъемностью 40 т на Балахтинском разрезе.

Использование рассмотренных схем размещения сортировочного оборудования в забойных условиях разрезов или максимально приближенных к ним по технологии работ позволяет выгодно получать сортовой уголь даже на малых разрезах.

Таким образом, обосновано первое положение:

Полученная математическая зависимость суммарных транспортных затрат от расположения углеперерабатывающих установок обусловливает целесообразность размещения их в блочно-модульном исполнении непосредственно на добывающем оборудовании или на сопряженном с ним мобильном шасси, причем в качестве добывающего оборудования следует использовать экскаваторы фрезерного типа, имеющие лучшее соотношение производительности и массы машины и позволяющие отрабатывать пласты любой мощности.

2. Преобразование процессов перевозки

и хранения угля

В настоящее время при транспортировке угля, перевалке с одного вида транспорта на другой и при его хранении происходят значительные потери. Хранение угля навалом на открытых складах повышает зольность, обуславливает его выдувание, вымывание, самовозгорание. Все это приводит к ежегодным потерям до 7 % добываемого угля, а также к сильному загрязнению прилегающей территории и воздушного бассейна. В работе выполнен анализ процессов, приводящих к потерям, и даны их качественные оценки.

Пожарная безопасность скоплений углей может быть обеспечена условиями стационарности потока тепла путем снижения объемов. Это может быть эффективно достигнуто перевозкой и временным хранением угля в контейнерах.

Значительного внимания потребовала проблема смерзания угля в зимнее время. В основе процессов, происходящих при примерзании угля к кузову, лежит теплообмен между кузовом и обтекающим его холодным воздухом. Из-за намерзания угля в полувагоне не удается полностью выгрузить его на вагоноопрокидывателе. Замеры невыгруженного угля (рис. 6) показывают, что максимальная масса достигает 7,5 т, а среднее значение за отопительный сезон с октября 2002 г. по март 2003 г. составляет 1,64 т на один вагон.

 Средняя масса примерзшего угля,-18

 Средняя масса примерзшего угля,-19

Рис. 6. Средняя масса примерзшего угля, перевозимого в полувагонах

на Назаровскую ГРЭС в отопительном сезоне 2002–2003 гг.

Разгрузка примерзшего угля из полувагона через нижние люки трудоемка и выдвигает другую проблему – это поломки полувагона. Вследствие механического воздействия разгрузочные люки и их торсионные устройства выходят из строя (рис. 7), что вынуждает работников угольных складов закрывать их ломами. На закрытие каждого люка (170 кг) задействуется 3 человека. Неисправные полувагоны являются одной из основных причин потерь угля при перевозках.

Исследованы потери угля при его перевозке различными видами автомобильного транспорта. Для оценки потерь были проведены наблюдения за перевозками угля автомобильным транспортом. Установлено, что потери распределяются по длине маршрута неравномерно, большие отмечаются в начале транспортирования, когда происходит «утряска» угля в кузове и ссыпание кусков угля и мелочи, находящихся на бортах кузова и оказавшихся там при погрузке.

Рис. 7. Структура неисправностей полувагонов, перевозивших уголь: 1 – щели разгрузочных люков; 2 – зазоры в торцевой части вагона; 3 – пробоины кузова; 4 – трещины, зазоры в кузове; 5 – порыв, смятие верхней обвязки кузова


Pages:     | 1 || 3 | 4 |   ...   | 6 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.