авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Математическое и программное обеспечение процесса построения моделей идентификации

-- [ Страница 1 ] --

На правах рукописи

Крыжановский Дмитрий Иванович

Математическое и программное обеспечение процесса построения моделей идентификации

Специальность 05.13.18 – Математическое моделирование, численные методы и

комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Волгоград 2008

Работа выполнена на кафедре «Системы автоматизированного проектирования и поискового конструирования» Волгоградского государственного технического университета.

Научный руководитель доктор технических наук, профессор Фоменков Сергей Алексеевич
Официальные оппоненты: доктор технических наук, профессор Лукьянов Виктор Сергеевич доктор технических наук, профессор Санжапов Булат Хизбуллович
Ведущая организация Волгоградский государственный университет

Защита состоится 11 декабря 2008 г. в 13 часов на заседании диссертационного совета ДМ 212.009.03 при Астраханском государственном университете по адресу:414056, г. Астрахань, ул. Татищева, 20а, конференц-зал.

С диссертацией можно ознакомиться в библиотеке Астраханского государственного университета

Автореферат разослан 10 ноября 2008 г.

Ученый секретарь диссертационного Совета, к.т.н. Щербинина О.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. В различных областях научно-исследовательской и производственной деятельности человека встречается задача обработки экспериментальных данных с целью извлечения из них закономерностей, описывающих различные процессы и явления. Если изучающиеся закономерности представляются в виде математических моделей, они носят название моделей идентификации, а задача их восстановления – задачи идентификации. Для решения задачи идентификации разработано большое число методов. Однако, несмотря на это, задача по-прежнему далека от своего полного решения: в зависимости от конкретной ситуации применяются различные методы, выбор и правильное использование которых являются далеко не тривиальными. На ход решения задачи идентификации большое влияние оказывает человеческий фактор (знания, предпочтения, убеждения, личный опыт исследователя); многим процедурам, применяемым для восстановления математических зависимостей, свойственна низкая степень алгоритмизации. Среди наиболее актуальных проблем, связанных с задачей идентификации, можно выделить следующие: 1) отсутствие обобщённой алгоритмической схемы построения моделей идентификации, охватывающей все этапы этого процесса и унифицирующей выборы тех или иных алгоритмов и настройку их параметров; 2) недостаточное внимание к использованию на практике процедур предварительного анализа данных (игнорирование которых может не только усложнить решение задачи, но и привести к неадекватным, неустойчивым моделям); 3) отсутствие метода для разрешения дилеммы о дисперсии и смещении; 4) отсутствие критериев комплексной оценки качества построенных моделей; 5) трудности, возникающие при параметрической идентификации сугубо нелинейных моделей; 6) отсутствие автоматизируемого алгоритма структурной идентификации. Кроме того, следует также обозначить ещё одну проблему, носящую уже сугубо практический характер – отсутствие интегрированной программной системы построения моделей идентификации с поддержкой всех этапов процесса моделирования. Существующие программные пакеты, как правило, ориентированы или только на какой-то отдельный этап (например, корреляционный анализ данных), или же предназначены для решения узкого круга задач на весьма ограниченном множестве моделей (чаще всего линейных, внутрилинейных и полиномиальных). Пакеты, которые на рынке программного обеспечения позиционируются как универсальные, также несвободны от указанных недостатков: их универсальность приводит к тому, что для решения каждой отдельной подзадачи предлагаются только самые простые варианты, что явно недостаточно для практических целей. Наконец, многие из аналитических программных пакетов ориентированы на моделирование в социально-экономических дисциплинах, в которых стандарты моделирования и правила представления моделей сильно отличаются от принятых в физико-математических и технических областях.



Целью работы является повышение эффективности процесса построения математических моделей по результатам наблюдений за счёт повышения адекватности и устойчивости моделей путём усовершенствования вычислительных процедур и их автоматизации. Для достижения данной цели необходимо решить следующие задачи: 1) проанализировать достоинства и недостатки существующих в настоящий момент алгоритмов, методик и программных средств для построения моделей идентификации; 2) сформулировать обобщённую методику построения моделей идентификации; 3) разработать и реализовать эффективный метод, позволяющий разрешать дилемму о дисперсии и смещении; 4) разработать и реализовать метод параметрической идентификации нелинейных моделей, более эффективный, чем принятые на настоящий момент; 5) разработать критерий комплексной оценки качества моделей; 6) разработать и реализовать алгоритмическую процедуру структурной идентификации; 7) разработать интегрированную программную систему построения моделей идентификации и провести её испытания на тестовых и практических задачах.

Объектом исследования настоящей диссертации является процесс построения моделей идентификации. К предмету исследования относятся различные численные алгоритмы математической статистики, технологий Data Mining, нечётких вычислений, способы их применения для построения моделей идентификации, программные системы, выполняющие построение таких моделей. В качестве методов исследования в работе используются методы математического анализа и математической статистики, математического моделирования на ЭВМ, искусственного интеллекта, системного анализа, теории трансляции, теории регуляризации, теории алгоритмизации, методы оптимизации, численные методы, а также методы объектно-ориентированного анализа и проектирования систем.

Научная новизна работы состоит в следующем:

  1. Сформулирована обобщённая методика построения моделей идентификации, унифицирующая порядок восстановления математических зависимостей, содержащая все основные этапы решения задачи (включая предварительную обработку данных, структурную и параметрическую идентификацию, оценку качества моделей), поддерживающая вариативность и итеративность процесса моделирования и позволяющая комплексно использовать известные ранее, а также новые алгоритмы и методы.
  2. Модифицирован метод регуляризации данных, позволяющий частично нейтрализовать влияние случайных шумов.
  3. Модифицированы и алгоритмизированы методы нелинейной параметрической идентификации и структурной идентификации; предложенная новая реализация методов позволяет повысить степень автоматизации процесса восстановления математических зависимостей по экспериментальным данным и расширить множество моделирования 1.
  4. Предложен обобщённый критерий оценки качества моделей идентификации, помимо остаточной дисперсии учитывающий также информацию о сложности восстанавливаемой функции, что позволяет повысить адекватность моделей и улучшить их устойчивость за пределами обучающих выборок.

Достоверность и обоснованность научных положений и результатов, приведенных в диссертационной работе, обеспечиваются использованием апробированных на практике методов математического и компьютерного моделирования, искусственного интеллекта и аппарата нечётких вычислений, подтверждаются показателями эффективности работы созданного программного комплекса на тестовых массивах экспериментальных данных, а также результатами его функционирования при решении конкретных задач построения моделей по результатам наблюдений.

Основные положения диссертации, выносимые на защиту:

  1. Обобщённая методика построения моделей идентификации.
  2. Метод сглаживания исходных данных с использованием теории регуляризации.
  3. Метод параметрической идентификации нелинейных моделей.
  4. Метод комплексного оценивания качества моделей идентификации.
  5. Метод структурной идентификации на базе генетического программирования и нечётких вычислений.
  6. Программный комплекс построения моделей идентификации «Constellation», прошедший практическую апробацию и внедрение.

Практическая значимость:

  1. Обобщённая методика моделирования поддерживает вариативность и итеративность процесса моделирования, включает в себя все основные этапы предварительной обработки данных, структурной и параметрической идентификации и оценки качества моделей, что позволяет её использовать при решении задачи идентификации на ЭВМ, обеспечивает свободный доступ ко всем промежуточным результатам вычислений и предоставляет возможность гибкого управления ходом процесса моделирования.
  2. Разработан интегрированный программный комплекс, автоматизирующий широкий набор процедур и подзадач, связанных с идентификацией. Разработанные методика и программный комплекс удовлетворяют стандарту CRISP-DM, результаты моделирования сохраняются в XML-подобный формат файлов, совместимый со стандартом PMML.

По итогам данного исследования были разработаны методические указания к выполнению лабораторных работ по курсу «Моделирование систем». Созданный программный комплекс зарегистрирован в Общеотраслевом фонде алгоритмов и программ, внедрён в учебный процесс кафедры САПР и ПК ВолгГТУ, прошёл апробацию и внедрение в Физико-техническом институте им. А.Ф. Иоффе Российской академии наук и ООО «ЛУКОЙЛ-ВолгоградНИПИморнефть». Программный комплекс в целом и его отдельные составляющие могут применяться при решении задач инженерной практики, задач управления, научно-исследовательских и учебных задач, связанных с математическим моделированием физических процессов и технических систем.

Публикации. Основные положения диссертации отражены в 13 опубликованных работах. В том числе 3 статьи напечатаны в ведущих рецензируемых научных журналах и изданиях РФ, в которых ВАК рекомендует публикацию основных результатов диссертационных работ, получено 1 свидетельство об официальной регистрации программы для ЭВМ.

Апробация. Основные положения диссертации докладывались и обсуждались на научных семинарах кафедры «САПР и ПК» ВолгГТУ, а также на Международных, Всероссийских и региональных научных и научно-практических конференциях, в том числе «Информационные технологии в образовании, технике и медицине» (Волгоград, 2004); «Региональная конференция молодых исследователей Волгоградской области» (Волгоград, 2004, 2006, 2007); «Новые информационные технологии. Разработка и аспекты применения» (Таганрог, 2004); «Технологии Microsoft в теории и практике программирования» (Москва, 2005, Нижний Новгород, 2006); Intel Summer School Seminar 2008 (Intel, Нижний Новгород, 2008), «Прогрессивные технологии в обучении и производстве», (Камышин, 2008).

Структура и содержание диссертационной работы. Диссертационная работа состоит из введения, четырёх глав, заключения, списка литературы и шести приложений. Общий объем диссертации – 152 страницы, включая 9 рисунков, 7 таблиц и список литературы из 130 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цели и задачи исследования, определена научная новизна, приводится перечень основных положений, выносимых на защиту, излагается краткое содержание глав диссертации.

В первой главе приводится обзор алгоритмов, методов, стандартов и программных средств, применяемых для построения моделей идентификации.





Во избежание неоднозначности зададим ограничения, определяющие подкласс рассматриваемых в настоящем исследовании задач идентификации: 1) число выходных переменных равно 1; 2) модели идентификации строятся в форме элементарных математических функций, представленных в явном виде (где – вектор параметров функции, – вектор входных переменных, y – выходная переменная), а также в форме нейронных сетей; 3) областью определения модели является подмножество декартова произведения Rm, где R – множество действительных чисел, m – число входных переменных; 4) областью значений модели является подмножество множества R действительных чисел; 5) исходными данными для моделирования являются матрицы наблюдений размером N (m + 1) (N – число наблюдений). Раздел 1.1 содержит вводные замечания; здесь перечисляются основные этапы построения моделей идентификации в терминах стандарта CRISP-DM, рассматриваются подходы к решению задач структурной и параметрический идентификации, приводятся названия классов методов для решения этих задач и их отношения между собой. Раздел 1.2 посвящён анализу разработанных к настоящему моменту математических методов построения моделей идентификации. Анализируются как традиционные статистические методы, так и современные подходы (Data Mining, нечёткие вычисления, МАС и т.д.). Уделено большое внимание математическому обеспечению этапа предварительной обработки данных, который часто недооценивается экспериментаторами и авторами работ по моделированию. На основе стандарта CRISP-DM и анализа различных источников (Барсегян А.А., Львовский Е.Н., Мазуркин П.М., Пащенко Ф.Ф., Петрович М.Л., Larose D.T. и др.) были выделены следующие основные задачи этапа предварительной обработки данных: 1) восстановление пропущенных значений и первичный содержательный анализ данных; 2) проверка распределений исходных данных на нормальность; 3) приведение исходных распределений к нормальному виду; 4) стандартизация данных; 5) выявление аномальных значений и отсев погрешностей; 6) оценка наличия функциональной связи между изучаемыми величинами; 7) регуляризация. После обзора методов предварительной обработки данных приводится обзор алгоритмов, разработанных для параметрической и структурной идентификации. Задача параметрической идентификации рассматривается как задача оптимизации. Выделяются четыре наиболее часто используемых критерия оптимизации для этой задачи: 1) минимум суммы квадратов невязок (МНК); 2) ортогональная регрессия; 3) минимум суммы разностей между расчётными и средним значениями (метод средних); 4) критерий максимального правдоподобия. Далее рассматриваются традиционные методы идентификации – регрессионный анализ, псевдолинейное моделирование с помощью линеаризации, построение полиномов, а также излагаются сравнительно новые методы, основанные на нечётких вычислениях и Data Mining. Так, приводится алгоритм параметрической идентификации с использованием фаззификации (Леоненков А.В., Штовба С.Д.). Рассматриваются также приложения генетического программирования для структурной идентификации. Кроме того, в литературе встречаются упоминания о возможности применения для идентификации зависимостей машин опорных векторов (SVM), ассоциативных карт, нестрогих классификаторов, муравьиных алгоритмов, мультиагентных систем, однако доступная информация о заметных успехах в этих направлениях пока отсутствует. В разделе 1.3 приводится сравнительный анализ программных средств, осуществляющих построение моделей идентификации. В частности, анализируются IBM DB2, Intsightful Miner, MATLAB, Megaputer, Microsoft SQL Server, Oracle Data Miner, SPSS Clementine, Statistica и др. Были сделаны следующие выводы. Подавляющее большинство универсальных приложений анализа данных предлагает очень ограниченный набор инструментов для построения моделей идентификации (линейные и полиномиальные зависимости, некоторые внутрилинейные) при почти полном отсутствии средств для предварительного анализа данных. Узкоспециализированные же программы часто ограничены какой-то одной подзадачей, при этом множество моделирования в подавляющем большинстве случаев также остаётся довольно ограниченным (линейные, полиномиальные, некоторые внутрилинейные модели). Исходя из проанализированной информации, в разделе 1.4 формулируются проблемы, существующие в настоящее время в области построения математических моделей по экспериментальным данным. В соответствии с этими проблемами сформулированы цель и задачи диссертации.

Вторая глава посвящена разработке отдельных элементов методического и математического обеспечения построения моделей идентификации. В литературе встречаются различные описания процесса построения моделей идентификации, которые имеют общую основу. Однако в широко доступных источниках не приводится алгоритмическая схема процесса моделирования с указанием последовательности всех основных вычислительных процедур, их параметров и возможных вариантов ветвления процесса. В связи с этим на основе анализа литературных данных была сформулирована обобщённая методика построения моделей идентификации, схема которой представлена на рис. 1. При составлении схемы использовалась нотация UML-диаграмм. Жирная горизонтальная черта означает разделение – пользователь, находясь в точке разделения (на рис. 1 это точки A и B), может выбрать любую из исходящих из неё ветвей исполнения процесса. Этот выбор определяется только соображениями самого пользователя, на него не накладывается никаких строгих алгоритмических условий. Другими словами, находясь в точке A (начало этапа предварительной обработки данных), пользователь может выбрать любую из процедур препроцессинга, а может и пропустить их, сразу перейдя в точку B (построение моделей). При этом, выполнив выбранную процедуру, пользователь возвращается в точку A, где он может опять продолжить предварительный анализ данных или перейти к этапу построения моделей. Аналогично процесс моделирования ведёт в себя и в точке B. Любой выбор пользователя, соответствующий схеме на рис. 1, будет правильным с точки зрения методики моделирования и соответствовать стандарту CRISP-DM.

Важным дополнением по сравнению со схемами моделирования, встречающимися в литературе, является наличие на этапе предварительной обработки стадии регуляризации. Включение этой процедуры позволяет частично нейтрализовать влияние шумов и разрешить дилемму о смещении и дисперсии, которая является одной из наиболее трудных проблем, связанных с восстановлением математических зависимостей по экспериментальным данным.



Pages:   || 2 | 3 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.