авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 |

Прикладное математическое, алгоритмическое и программное обеспечение компьютерного анализа гибридных систем

-- [ Страница 1 ] --

На правах рукописи

Шорников Юрий Владимирович

Прикладное математическое, алгоритмическое и программное

обеспечение компьютерного анализа гибридных систем

05.13.11 - Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

АВТОРЕФЕРЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Новосибирск – 2009

Работа выполнена в государственном образовательном учреждении высшего профессионального образования «Новосибирский государственный технический университет»

Научный консультант: доктор физико-математических наук, профессор

Новиков Евгений Александрович

Официальные оппоненты: доктор технических наук, профессор

Хабаров Валерий Иванович,

доктор технических наук, доцент

Сениченков Юрий Борисович,

доктор технических наук, с.н.с.

Родионов Алексей Сергеевич

Ведущая организация: Томский политехнический университет

Защита состоится 18 июня 2009 г. в 1400 часов на заседании диссертационного совета Д 212.173.06 при Новосибирском государственном техническом университете по адресу: 630092, Новосибирск, пр. К. Маркса 20

С диссертацией можно ознакомиться в библиотеке Новосибирского государственного технического университета.

Автореферат разослан « »   2009 г.

Ученый секретарь

диссертационного совета Чубич В.М.

Общая характеристика работы

Современные программно-управляемые технические системы и комплексы характеризуются сложными динамическими процессами. Часто эти процессы являются результатом решения так называемых гибридных систем (ГС), которые характеризуются как непрерывным, так и дискретным поведением. Для детального и качественного анализа таких систем применяют метод компьютерного моделирования, который является новым научным направлением и характеризуется: созданием математического, алгоритмического и программного обеспечения, разработанного на основе современных технологий вычислительного эксперимента; выбором формализма и разработкой языков спецификации математических моделей и программных средств реализации; разработкой новых способов графической интерпретации результатов моделирования; обеспечением интерактивно управляемого вычислительного эксперимента с компьютерными моделями систем разной природы. Таким образом, современные технологии компьютерного моделирования включают инструментальные средства подготовки, отладки и эффективной обработки программных моделей с визуальной интерпретацией результатов моделирования.

Универсальные передовые отечественные (MVS, AnyLogic) и зарубежные (DYMOLA, Ptolemy II и HyVisual, HyTech, Charon, Hybrid Toolbox, Simulink/Stateflow) программные комплексы моделирования ГС широко используются для анализа сложных динамических процессов. Тем не менее, с помощью этих программных комплексов в отдельных случаях не удается получать качественные результаты при решении важных практических задач.



Актуальность темы исследований. В известных работах Н.Н. Моисеева и Н.Н. Яненко указывается, что разработка программных средств компьютерного анализа сложных систем становится самостоятельной фундаментальной задачей исследования, которая связана с решением комплекса важных научных проблем. Особенности ГС ограничивают использование даже таких признанных мировых лидеров предметного программного обеспечения как MATLAB/Simulink с графическим языком структурных схем или современного программного комплекса Scicos с символьным языком Modelica.

Отметим особенности ГС. В некоторых случаях поверхность разрыва, определяющая смену режимов ГС, имеет острые углы, а решение проходит вблизи границы режима. Решение в этом случае может оказаться неверным, если при приближении к границе режима в алгоритме обнаружения событий не контролировать должным образом шаг интегрирования. Обычно для обнаружения событий при моделировании ГС используют метод дихотомии или применяют метод Ньютона-Рафсона для поиска корней событийной функции на границе режима. В отдельных случаях применяется метод установления для поиска корней. Однако эти методы не всегда эффективны, если их применять к так называемым односторонним событиям ГС. Данная проблема рассматривается в работах E.A. Lee, H. Zhenq, J. Esposito, V. Kumar, G.J. Pappas, D. Harel и отечественных ученых Ю.Г. Карпова, Ю.Б. Сениченкова, Ю.Б. Колесова. Однако не все вопросы решаются в работах этих авторов.

Проблема обнаружения событий становится еще более актуальной для режимов ГС с повышенной жесткостью. Наиболее опасным для моделирования является ситуация, когда переходный участок решения лежит вблизи границы области неопределенности, и якобиан событийной функции резко возрастает. Это может привести к «проскакиванию» точки переключения с большей вероятностью, чем в гладких режимах. И в этом случае ситуация наиболее опасна для ГС с односторонними событиями. Предложенный в известных работах J. Esposito и реализованный в системах HyVisual и MATLAB метод линеаризации событийной функции с асимптотическим приближением решения к границе режима не учитывает ограничений шага по устойчивости. В то время как установившиеся участки решения в жестких режимах в виду малой производной решения контролируются только условиями устойчивости. В связи с этим проблема выбора шага с учетом точности, устойчивости и динамики событийной функции является актуальной задачей.

Отметим, что все перечисленные универсальные программные комплексы применяют неявные методы в случае режима с повышенной жесткостью, что не всегда оправдано с точки зрения вычислительных затрат и риска попадания в область неопределенности гибридной модели. Для многошаговых схем с числом шагов более двух необходимо знать предыдущие значения фазовых координат и их производные. Но в момент запуска модели и после точки разрыва при мгновенном переходе в новые локальные состояния эти значения невозможно вычислить или определить ни одним из известных методов при использовании многошаговых схем. В такой ситуации предпочтительнее применять одношаговые алгоритмы на основе явных формул.

Однако современные алгоритмы на основе явных методов в большинстве своем не приспособлены для решения жестких режимов ГС, поскольку на участке установления вследствие противоречивости требований точности и устойчивости шаг интегрирования выбирается значительно меньше допустимого. Этого можно избежать, если наряду с точностью контролировать устойчивость численной схемы. Применение явных одношаговых схем ограничено также малыми областями устойчивости. Поэтому актуальной является задача использования явных одношаговых схем с расширенными областями устойчивости с контролем точности и устойчивости.

Актуальными являются и вопросы формализма и спецификации ГС. Несомненно, удобным и наглядным изобразительным средством представления дискретных переходов на визуальной модели ГС являются карты состояний Харела. Узлами диаграмм Харела являются локальные состояния ГС. Направленные дуги с предикатами показывают переходы из локальных состояний. В интерфейсах карт поведения ГС программные модели содержат общепринятые декларации всех фазовых, алгебраических и булевых переменных, что не относится по существу к компьютерной модели, а является необходимым атрибутом программирования. Поскольку для систем высокой размерности сектор описания типов переменных может занимать соизмеримый размер с математическим описанием, бездекларативный язык является более лаконичным и доступным для предметного пользователя. Вопросы выбора языка спецификации программных моделей не перестают быть актуальными и в настоящее время. Несомненными передовыми технологиями являются графические языки спецификаций предметных категорий. Для программных моделей ГС это диаграммы Харела, канонизированные в проекте UML и успешно развитые в системах HyVisual, MVS. Следует отметить, что многие современные графические оболочки используют вместе с тем и другие формализмы с соответствующим графическим языком. Например, сети Петри в системе DYMOLA, структурные схемы в системах HyVisual, Simulink, которые обладают своими функциональными преимуществами с точки зрения предметной ориентации пользователя.

Символьный язык является неотъемлемым атрибутом спецификации и сопровождает графические конструкции, либо, как, например, язык MODELICA, описывает гибридную модель в целом. Выбор соответствующего символьного языка и средств его эффективной реализации также является актуальной задачей разработки программных систем.

Способы визуальной интерпретации результатов вычислительного эксперимента в современных зарубежных и особенно передовых отечественных системах моделирования ограничены в части манипуляции графическими и числовыми данными, полученными в результате решения. В частности, ограничен режим катенации окон с графическими данными, импорт данных из внешних приложений, трассировка точечных решений, интерполяция графических данных, например, с помощью вейвлет-преобразований. В то же время все перечисленные вопросы широко востребованы в практике анализа результатов вычислительного эксперимента и поэтому актуальны.

Цель работы и задачи исследования. Цель работы состоит в разработке необходимого прикладного математического, алгоритмического и программного обеспечения эффективного машинного анализа обозначенного класса ГС.

Для достижения поставленной цели были поставлены и решены следующие основные научные проблемы:

  • Разработка содержательной спецификации гибридных моделей, доступной предметному пользователю, которая включает графический и символьный языки описания ГС и позволяет значительно снизить трудоемкость подготовки данных при переходе от математической к программной модели на предметно-ориентированном входном языке.
  • Разработка эффективных средств реализации программных моделей с доступным графическим и символьным интерфейсами подготовки входных данных, однозначными эффективными методами обработки программных моделей с содержательной диагностикой синтаксиса и семантики.
  • Разработка эффективных решателей с библиотекой методов и алгоритмов, учитывающих нетривиальные особенности компьютерного анализа режимов ГС разной степени жесткости в условиях односторонних событий.
  • Разработка интерфейса с графической интерпретацией результатов компьютерного анализа ГС во временной и фазовой областях и возможностью интерактивной манипуляции графическими данными.
  • На основе новых информационных технологий объектно-ориентированного программирования разработка и реализация программного комплекса, обеспечивающего эффективное решение системных и вычислительных актуальных проблем компьютерного анализа ГС.

Методы исследования. Для решения поставленных задач использовались теория систем, численный анализ систем обыкновенных дифференциальных уравнений, теория формальных языков и грамматик, теория графов и теория программирования.

Научная новизна. Получены следующие новые результаты:

  • В отличие от лучших мировых аналогов, впервые для эффективной организации вычислительного эксперимента для режимов ГС разной жесткости в ПК ИСМА предложено использовать явные одношаговые и адаптивные методы компьютерного исследования ГС.
  • Разработаны теоретические основы управления шагом моделирования с учетом жесткости режимов ГС и устойчивости методов в условиях односторонних событий. Впервые предложен эффективный алгоритм корректного обнаружения событий, который позволяет исследовать ГС с нетривиальными свойствами и особенностями.
  • В отличие от принятого в практике формализма ГС в виде гибридных автоматов, предложена структурно-символьная спецификация компьютерных моделей со своими функциональными преимуществами разработки и исследования ГС инструментально-ориентированными средствами.
  • Предложена архитектура ПК ИСМА, которая обеспечивает возможность интерактивного вычислительного эксперимента, необходимого при отладке программных моделей с вариацией параметров и структуры в ходе вычислительного эксперимента. Использована объектно-ориентированная технология с API-библиотеками примитивов и методов, обеспечивающая решение важной проблемы унификации и оперативной расширяемости программного обеспечения.
  • Предложен графический язык и средства его реализации в виде многопроходного структурного процессора, результатом работы которого является орграф исполняемой модели, однозначно определенный корректностью программной модели.
  • Впервые предложен предметно-ориентированный бездекларативный символьный язык и средства его реализации в виде разработанного и реализованного методом рекурсивного спуска синтаксического распознавателя и семантического анализатора, в результате работы которого формируется матрица переходов, функционально тождественная диаграмме Харела, которая однозначно управляет режимами ГС.
  • Предложены и реализованы в рамках ПК ИСМА средства графической интерпретации результатов вычислительного эксперимента с моделями ГС, которые в отличие от известных мировых аналогов позволяют интерактивно манипулировать графическими данными.

Практическая ценность работы и реализация результатов. Разработанные методы и алгоритмы реализованы в семействе программных комплексов ИСМА (Свидетельство официальной регистрации программы для ЭВМ № 2005610126. – М: Роспатент, 2005; Свидетельство об официальной регистрации программы для ЭВМ №2007611024. – М.: Роспатент, 2007; Свидетельство об официальной регистрации программы для ЭВМ №2007611459. – М.: Роспатент, 2007). Средствами ИСМА решены следующие важные практические задачи:





  • в электромеханике – импорт данных из внешнего приложения Excel в программную модель среды ИСМА для исследования методом моделирования функционирования электропривода электрокары (Импорт данных в программной среде ИСМА. – М.: ВНТИЦ, 2006. – №50200600117);
  • в военной аэрокосмической области – исследование импульсной системы с запаздыванием в моделях автосопровождения баллистических и космических объектов (Аппроксимация звена чистого запаздывания рядом Паде в программной среде ИСМА. – М: ВНТИЦ, 2007. – № 50200700715);
  • в электротехнике – моделирование высокоточной жесткой системы кольцевого модулятора;
  • в биомедицине – исследование режима выброса желчи билиарной системы методом фазовой плоскости и определения стационарной точки равновесия биосистемы (Методология анализа нелинейных динамических систем методом фазовой плоскости в среде ИСМА. – М.: ВНТИЦ, 2006. – №50200600116).

Полученные результаты при моделировании биосистемы средствами ИСМА использованы в отчете НИР НГТУ - ЭИ – 1/02 (Отчет НИР «Исследование одномерной кусочно-дифференциальной модели при описании динамических процессов», № ГР 01.200.205393, Новосибирск, 2002). Инструментальные средства ИСМА использованы при моделировании электромеханических систем в докторской диссертации (В.Н. Аносов, НГТУ, 2008) и кандидатских диссертациях; методика расчета средствами ИСМА использована при моделировании процессов горения в НИИ Экспериментальной и теоретической физики АН Казахстана. В ИВМ СО РАН (Красноярск) программный комплекс ИСМА используется при проектировании новых численных методов с контролем устойчивости, при тестировании новых методов и моделей процессов, представленных в обозначенном классе систем ОДУ.

Кроме того, исследования были поддержаны грантами РФФИ (грант РФФИ №05-01-00579-а, РФФИ №08-01-00621) и Президентской программы «Ведущие научные школы РФ» (грант № НШ – 3431.2008.9).

Программный комплекс ИСМА получил широкое использование в учебном процессе в университетах России и странах ближнего зарубежья: в Новосибирском государственном техническом университете на факультетах «Автоматика и вычислительная техника» и «Электромеханическом факультете»; в Алматинском Технологическом Университете (АТУ) на кафедре «Информационные технологии»; в Красноярском государственном техническом университете на кафедре МОДУС; в Уральском государственном техническом университете – УПИ и Нижнетагильском технологическом институте (филиал) УГТУ-УПИ; в Санкт-Петербургском политехническом университете. Перечисленные внедрения ПК ИСМА подтверждены актами и справками о внедрении.

Достоверность результатов подтверждается решением модельных задач, сравнением результатов моделирования классических и оригинальных ГС в системе ИСМА и известных отечественных и мировых аналогах, а также, где это возможно, сравнением аналитических и практических результатов вычислительного эксперимента.

Личный вклад. Все результаты, приведенные в диссертации без ссылок на чужие работы и вынесенные на защиту, получены автором самостоятельно.

Апробация работы. Основные результаты работы докладывались более чем на 20 международных, всероссийских и региональных конференциях: ежегодной международной НТК «Компьютерное моделирование», (С.-Петербург, 2003, 2004, 2006, 2007); 2-й международной конференции «AUTOMATION, CONTROL, AND APPLICATIONS» (ACIT-ACA), (Новосибирск, 2005); 15-й международной конференции по компьютерной графике и её приложениям ГрафиКон’2005 (Новосибирск, 2005); XVI Международной конференции по компьютерной графике и её приложениям ГрафиКон’2006 (Новосибирск, 2006); международной научно-технической конференции «Информационные системы и технологии ИСТ’2003», (Новосибирск, 2003); международной конференции «Basic Science for Biotechnology and Medicine» (Новосибирск, 2006); 4-й международной научно-технической конференции «Измерение, контроль, информатизация» (ИКИ-2003) (Барнаул, 2003); международном российско-корейском симпозиуме по науке и технологиям «KORUS 2003», (Ulsan, Korea, 2003), «KORUS 2005» (Новосибирск, 2005); 3-й международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» (Санкт-Петербург 2007); научно – технической конференции «Научное программное обеспечение в образовании и научных исследованиях» (Санкт-Петербург, 2006, 2008); всероссийских научно-практических конференциях «Имитационное моделирование. Теория и практика» (Санкт-Петербург, 2003, 2005, 2007).

Также промежуточные результаты работы докладывались на ежегодной отчетной научной сессии НГТУ, на семинарах ИВМ СО РАН, ИСИ СО РАН.

Публикации. Всего по теме диссертации опубликованы 44 научные работы, в том числе: 14 статей в ведущих рецензируемых научных журналах и изданиях, рекомендованных ВАК РФ; 7 работ, зарегистрированных в Роспатент и ОФАП; 15 статей в материалах международных и российских конференций; 8 работ опубликованы в докладах АН ВШ, научных журналах и изданиях отечественных и зарубежных университетов.

Структура и объем работы. Работа состоит из введения, семи глав, заключения и приложения. Объем работы составляет 292 страницы основного текста, включая 91 рисунок и 13 таблиц. Список использованных источников содержит 209 наименований.

Краткое содержание работы



Pages:   || 2 | 3 | 4 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.