авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 |

Методы системного анализа робастной устойчивости

-- [ Страница 1 ] --

На правах рукописи

Зеленков Геннадий Анатольевич

МЕТОДЫ СИСТЕМНОГО АНАЛИЗА

РОБАСТНОЙ УСТОЙЧИВОСТИ

Специальность 05.13.01 – системный анализ,

управление и обработка информации

Автореферат

диссертации на соискание ученой степени

доктора физико-математических наук

Москва – 2007

Работа выполнена в Морской Государственной Академии

имени адмирала Ф.Ф. Ушакова, г. Новороссийск.

Научный консультант: доктор технических наук Кондратьев С.И.

Официальные оппоненты: доктор физико-математических наук,

профессор Гребенников Е.А.,

доктор физико-математических наук,

профессор Бекларян Л.А.,

доктор физико-математических наук,

профессор Бутусов О.В.

Ведущая организация: Московский физико-технический институт

Защита диссертации состоится «____» ____________ 2007 г. в ____ часов на заседании Диссертационного совета Д 002.017.03 в Вычислительном центре имени академика А.А. Дородницына Российской академии наук по адресу: 119991, г. Москва, ул. Вавилова, 40.

С диссертацией можно ознакомиться в библиотеке Вычислительного центра им. А.А. Дородницына РАН.

Автореферат разослан «____» _____________ 2007г.

Ученый секретарь

Диссертационного совета,

кандидат физико-математических наук Мухин А.В.

Общая характеристика работы

Актуальность темы. При моделировании систем управления учет неопределенности всегда являлся одной из основных задач. Одна из первых моделей неопределенности (нелинейная) была предложена в работах А.П. Лурье (1951), М.А. Айзермана (1961), Ф.Р. Гантмахера (1967). Модели параметрической неопределенности в линейных системах появились позднее. Их систематическое изучение начал И. Горовиц (1970). Важное направление в анализе неопределенности связано с моделью неизвестных, но ограниченных возмущений. Большой вклад в это направление внесли А.Б. Куржанский и Ф. Л. Черноусько. Модели частотной неопределенности интенсивно разрабатывались в 1980 гг., вероятностный подход к робастности получил большое развитие в последнее десятилетие.

Задачу об устойчивости интервального семейства полиномов впервые подробно рассмотрел S. Faedo (1953). Однако он получил только достаточные условия робастной устойчивости, основанные на интервальном аналоге алгоритма Рауса. Более ранний результат по робастной устойчивости получили Л. Заде и Ч. Дезоер. Затем В.Л. Харитонов доказал критерий устойчивости интервального семейства полиномов, что являлось большим продвижением в этой области (1978). Далее в этом направлении, в качестве наиболее известных результатов, можно отметить реберную теорему – полученную в 1988 г. (A.C. Bartlett, C.V. Hollot, H. Lin) и графический критерий робастной устойчивости полиномов доказанный – в 1990 г. (Б.Т. Поляк, Я.З. Цыпкин).

Основными задачами робастной устойчивости, с одной стороны, являлось определение границ устойчивости в пространстве параметров системы первого приближения (И.А. Вышнеградский), а с другой, получение оценок области асимптотической устойчивости расчетных режимов исходных систем.

Исследование устойчивости систем управления при наличии неопределенности в пространстве параметров (робастная теория) является весьма важным и актуальным направлением научных исследований, т.к. позволяет, на этапе проектирования, определить, является ли устойчивым весь класс рассматриваемых систем. Это позволяет обеспечить безопасное функционирование управляемого объекта, несмотря на то, что в процессе изготовления и эксплуатации его параметры хотя и могут отличаться от расчетных, но гарантировано будут отвечать устойчивому поведению этого объекта, т.к. они принадлежат области робастной устойчивости. Заметим, что разработка методов решения задач робастной устойчивости, является весьма сложной проблемой. Например: устойчивость всех вершинных и реберных матриц семейства не обеспечивает робастной устойчивости всего этого семейства и, поэтому на практике, усилия инженеров и конструкторов направлены на решение конкретных задач.

Методы расчета робастной устойчивости систем управления (робастное управление) включают в себя как известные подходы, например, теорию возмущений, так и новые: -анализ (J.C. Doyle, A. Packard, Б.Т. Поляк) и вероятностный подход к робастности (R.F. Stengel, L.R. Ray и др.).

Разработке и созданию методов исследования различных задач робастной устойчивости посвящено множество работ, принадлежащих как отечественным, так и зарубежным ученым, таким как И.А. Вышнеградский, Я.З. Цыпкин, Б.Т. Поляк, В.Л. Харитонов, П.С. Щербаков, А.С. Немировский, Ю.П. Петров, М.Г. Сафонов, B.R. Barmish, J. Ackermann, V. Blondel, J. Kogan, R. Tempo, D.D. Siljak и др.

Актуальность исследований робастной устойчивости в системах управления диктуется, во-первых, современными потребностями науки и техники и ее приложениями в практических задачах, связанных с конструированием и моделированием процессов управления в технике, экономике, биологии и т.д.; во-вторых, наличием большого числа нерешенных задач, прямо связанных с инженерной практикой. Фактически результаты, полученные в теории робастной устойчивости, позволяют обеспечивать динамическую безопасность управляемых систем на этапе их конструирования и эксплуатации.

Работа посвящена разработке новых и развитию наиболее конструктивных аналитических методов и алгоритмов анализа робастной устойчивости и неустойчивости систем управления. Это исследование проводится с единых позиций – системного анализа робастного поведения управляемых систем в целом, при этом робастная устойчивость этих систем рассматривается как частный случай робастной неустойчивости.

Целью диссертационного исследования является разработка и развитие аналитических и вычислительных методов исследования устойчивости и неустойчивости систем управления, включающих методы исследования, как робастной устойчивости, так и робастной неустойчивости этих систем.

Областью исследования являются теоретические основы и прикладные методы системного анализа робастной устойчивости и неустойчивости управляемых динамических систем рассматриваемых в первом приближении.

Методы исследований. В работе применяются как классические методы теории устойчивости (при точном описании систем управления), так и методы робастной теории устойчивости (при неопределенности в описании этих систем). Кроме того, используются методы качественной теории обыкновенных дифференциальных уравнений, алгебры, математического анализа и математического программирования.

Достоверность и обоснованность результатов, полученных в диссертации, основаны на известных достижениях в теории устойчивости, робастной теории и корректности поставленных задач. Все доказательства утверждений являются строгими и основаны на выводах фундаментальных наук, таких как математический анализ, теория функций и функциональный анализ, дифференциальные уравнения, алгебра, выпуклый анализ, теория матриц, теория вероятности.

Научная новизна полученных в диссертационной работе результатов заключается в комплексном исследовании робастной устойчивости и неустойчивости линейных стационарных и нестационарных систем управления, результатом которого стало, создание новых и развитие наиболее известных критериев робастного поведения непрерывных и дискретных систем, как в пространстве коэффициентов характеристического многочлена, так и в пространстве параметров самой системы. Этот подход является продвижением в развитии методов системного анализа, исследования робастной устойчивости и робастной неустойчивости нелинейных систем по первому приближению, что позволяет установить границы допустимых отклонений параметров исходной системы от расчетных, при которых система остается устойчивой или остается неустойчивой. Фактически, разработанные методы исследования робастной неустойчивости позволяют проводить исследование робастной устойчивости, как частного случая робастной неустойчивости.

Практическая значимость. На основе результатов диссертации созданы новые эффективные критерии исследования робастной устойчивости и неустойчивости систем первого приближения, позволяющие проводить системный анализ робастного поведения динамических систем для различных типов неопределенности, как в пространстве параметров самих систем, так и в пространстве коэффициентов их характеристических многочленов. Причем, эти результаты обобщены и на комплексный случай. Комплекс критериев и условий, а также разработанных на их основе алгоритмов позволяет исследовать и решать проблему динамической безопасности объектов системно, т.е. исследовать не только границы изменения параметров сохраняющих устойчивость, но и совокупность параметров оставляющих систему неустойчивой. Полученные автором новые прикладные методы системного анализа позволяют разрабатывать более эффективные системы управления, что дает возможность значительно снизить затраты ресурсов, средств и времени на разработку современных систем. Кроме того, отдельные теоретические положения, полученные в диссертации, являются существенным вкладом в теорию робастной устойчивости, а также представляют новые возможности при решении матричных уравнений и неравенств. Результаты работы использованы для разработки новых спецкурсов по теории устойчивости в условиях неопределенности и чтении общих курсов, таких как дифференциальные уравнения, теория управления и методы численного анализа. Далее – полученные результаты могут использоваться при создании современных объектов кораблестроения и ракетно-космической технике

Реализация результатов. Результаты диссертации использованы в научно-производственном объединении «Машиностроение», а так же в научно-исследовательской работе, проводящейся в Кубанском ГУ и МГА им. адмирала Ф.Ф. Ушакова. По результатам диссертации планируется издание нескольких учебных пособий и монографий, из которых два учебных пособия и одна монография были опубликованы.

Личный вклад автора в проведенные исследования. В диссертацию вошли только те результаты, которые получены лично автором. Все результаты других авторов, упомянутых в диссертации, носят справочный характер и имеют соответствующие ссылки. Всем соавторам принадлежит рассмотрение технических вопросов и частных случаев.

Апробация работы. По результатам работы автором были сделаны доклады на 7-ми международных, 1-ой всероссийской и 2-х региональных конференциях, проходивших в Москве, Санкт-Петербурге, Саранске, Самаре, Новосибирске, Чебоксарах, Ростове - на - Дону, Новороссийске. Результаты также обсуждались на научных семинарах в Вычислительном центре имени А.А. Дородницына РАН, Московском физико-техническом институте, Институте системного анализа РАН, а так же на семинарах КубГУ и МГА им. адмирала Ф.Ф. Ушакова.

Публикации. По теме диссертации опубликовано более 32 научных работ, среди которых 24 работы вышли в изданиях рекомендованных ВАК для публикации результатов по докторским диссертациям. Также опубликована 1 монография и 2 учебных пособия.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, заключения и списка литературы. Главы состоят из параграфов. В каждой главе используется своя автономная нумерация формул и теорем. Объем диссертации 249 страниц. Список литературы содержит 189 наименований.

Основные положения диссертации, выносимые на защиту:

Получены:

  • Аналитические и графические критерии принадлежности интервальных полиномов однородным классам неустойчивости (классам (n, k)-эквивалентности).
  • Аналитические и графические критерии принадлежности семейств полиномов классам (n, k)-эквивалентности для всех известных описаний неопределенностей.
  • Аналитические критерии робастной экспоненциальной устойчивости для нестационарных линейных систем управления.
  • Аналитические и графические критерии робастной k - стабилизации одномерных систем, замкнутых единичной обратной связью.
  • Аналитические критерии робастной k - диагональности, сверхустойчивости и сверхнеустойчивости k - диагональных матричных семейств.
  • Результаты, устанавливающие связь между числами спектра нестационарной робастной матрицы системы первого приближения с отрицательной определенностью ее квадратичной формы.

Разработаны:

  • Методы построения выпуклых множеств, для систем принадлежащих классам (n,k) – эквивалентности, с помощью допустимых линейных преобразований коэффициентов их характеристических многочленов.
  • Методы исследования робастной устойчивости и построения выпуклых множеств в пространстве параметров нестационарной системы первого приближения.

Краткое содержание диссертации.

Во введении приведена общая характеристика представленной диссертации, включая актуальность темы исследования, достоверность, научную новизну, теоретическую и практическую значимость результатов, полученных в работе.

В первой главе: 1. Сделан анализ основных методов исследования асимптотической устойчивости линейных стационарных систем управления с точки зрения возможности их обобщения и использования для выяснения характера неустойчивости этих систем, различая их по числу собственных чисел матрицы системы лежащих в правой и левой полуплоскости; 2. Доказан ряд теорем, дающих необходимые и достаточные условия принадлежности рассматриваемых систем определенному классу неустойчивости, причем аналогичные критерии для устойчивых систем, непосредственно следуют из приведенных теорем (критерии Михайлова, Найквиста и т.д.).

Введено новое понятие.

Определение 1. Полином степени с вещественными или комплексными коэффициентами, не имеющий нулевых и чисто мнимых корней

, , ,

принадлежит классу -эквивалентности, если его корней, с учетом их кратности, лежат в правой полуплоскости.

Анализ основных критериев устойчивости показал: 1. Коэффициентные критерии типа Рауса – Гурвица, Льенара – Шипара, Джури и им подобные, использующие характеристические полиномы матрицы для анализа ее на устойчивость, не удается применить для анализа полинома на принадлежность -классам эквивалентности при ; 2. Метод локализации собственных чисел матрицы В.И. Зубова, хотя и не требует построения характеристического полинома, решает частную задачу – выяснение местоположения всех чисел спектра в заданной области; 3. Фактически, если не считать критерия Михайлова, удобного лишь при небольших порядках системы, для проверки неустойчивости полиномов, остается только метод Рауса понижения порядка полинома, модифицированный для этого случая Н.В. Зубовым, который однозначно решает вопрос о принадлежности полинома к одному из классов -эквивалентности.

Приведем ряд основных теорем доказанных в первой главе.

Теорема 1. Для того, чтобы полином

, , ,

с комплексными коэффициентами, не имеющий нулевых и чисто мнимых корней, принадлежал классу -эквивалентности необходимо и достаточно, чтобы его годограф при изменении от до проходил, не пересекая точку ноль комплексной плоскости, ровно полуоборотов в положительном направлении (против часовой стрелки) то есть

.

При , получим,как частный случай, критерий Михайлова для устойчивых комплексных полиномов, а при – для вещественных полиномов и .

Теорема 2. Пусть и взаимнопростые полиномы степени и () соответственно с комплексными коэффициентами и полином имеет , () корней с положительной вещественной частью и не имеет нулевых и чисто мнимых корней. Полином принадлежит классу -эквивалентности тогда и только тогда, когда годограф функции не проходит через точку –1 и делает вокруг нее ровно оборотов против часовой стрелки при изменении от до .

Частотный критерий Найквиста, проверки устойчивости замкнутой системы управления единичной обратной связью, является частным случаем этой теоремы для полиномов с вещественными коэффициентами при , и полуоборотов.

Теорема 3. Если полиномы с комплексными коэффициентами и принадлежат классу -эквивалентности, то для принадлежности этому классу линейного политопа необходимо и достаточно, чтобы годограф не пересекал отрицательную вещественную полуось.

Другие способы локализации спектра матриц как вещественных, так и комплексных, не решают задачу принадлежности данного полинома -классу эквивалентности.

Анализируя классические оценки для чисел спектра матрицы, в диссертации удалось усилить результат Бендиксона и найти простое и краткое доказательство теоремы Гирша, не использующее никаких ссылок. Все доказательства вынесены в приложение 1.



Pages:   || 2 | 3 | 4 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.