авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Моделирование и оптимальное управление процессом индукционного нагрева алюминиевых заготовок, вращающихся в магнитном поле постоянного тока

-- [ Страница 1 ] --

На правах рукописи

ЗАИКИНА Наталья Валерьевна

МОДЕЛИРОВАНИЕ И ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ

ПРОЦЕССОМ ИНДУКЦИОННОГО НАГРЕВА АЛЮМИНИЕВЫХ ЗАГОТОВОК, ВРАЩАЮЩИХСЯ В МАГНИТНОМ ПОЛЕ

ПОСТОЯННОГО ТОКА

Специальность 05.13.06 – Автоматизация и управление технологическими

процессами и производствами (промышленность)

Автореферат

диссертации на соискание ученой степени

кандидата технических наук

Самара - 2010

Работа выполнена на кафедре «Управление и системный анализ в теплоэнергетике» Государственного образовательного учреждения высшего профессионального образования «Самарский государственный технический университет».

Научный руководитель: доктор технических наук, доцент

Плешивцева Юлия Эдгаровна

Официальные оппоненты: доктор технических наук, профессор

Данилушкин Александр Иванович

кандидат технических наук, доцент

Галицков Константин Станиславович

Ведущая организация: Новосибирский государственный технический

университет, г. Новосибирск

Защита диссертации состоится "29" июня 2010 г. в 11-00 на заседании диссертационного совета Д 212.217.03 ГОУ ВПО Самарский государственный технический университет по адресу: 443010, Россия, г. Самара, ул. Галактионовская, 141, 6 корпус, ауд. №28.

С диссертацией можно ознакомиться в библиотеке Самарского государственного технического университета (ул. Первомайская, 18).

Отзывы на автореферат в двух экземплярах, заверенные печатью, просим направлять по адресу: Россия, 443100, Самара, ул. Молодогвардейская 244, Главный корпус на имя ученого секретаря диссертационного совета Д 212.217.03; факс: (846) 278-44-00.

Автореферат разослан "___" мая 2010 г.

Ученый секретарь

диссертационного совета Д 212.217.03 Губанов Н.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИОННОЙ РАБОТЫ

Диссертация посвящена разработке методов моделирования, управления и оптимизации процессов термообработки металла с использованием инновационной энергосберегающей технологии индукционного нагрева, основанной на вращении заготовок в магнитном поле постоянного тока, возбуждаемого сверхпроводниками.

Актуальность проблемы. В настоящее время в различных областях промышленности значительно расширилась область применения электротехнологических процессов. Одним из крупномасштабных электротехнологических процессов, применяющихся в цветной металлургии, является процесс индукционного нагрева металла (ПИНМ), предназначенный для термообработки металлов под пластическую деформацию, закалку и другие операции.

Затраты на электроэнергию составляют основную статью себестоимости ПИНМ, что, в первую очередь, объясняется низким коэффициентом полезного действия системы «индуктор-металл» при традиционном способе индукционного нагрева металлических изделий в переменном электромагнитном поле.

В этих условиях, в соответствии с первостепенной задачей повышения экономической эффективности производственных процессов за счет максимального использования внутренних резервов принципиальное значение приобретает проблема энергосбережения при потреблении электроэнергии мощными промышленными установками индукционного нагрева, к.п.д. которых даже при оптимальном конструировании индуктора не превышает 60%.





Резкое повышение энергетической эффективности обеспечивает принципиально новая энергосберегающая технология индукционного нагрева, разработанная применительно к процессам нагрева полуфабрикатов из алюминиевых сплавов, осуществляемая путем вращения заготовок в магнитном поле постоянного тока большой мощности, создаваемом практически без энергетических потерь сильноточными возбудителями со сверхпроводящими обмотками.

При этом достаточно малые энергозатраты, связанные с необходимостью обеспечения сверхнизких температур в целях создания эффекта сверхпроводимости, и высокий к.п.д. электропривода вращения заготовки позволяют увеличить общий коэффициент полезного действия нагревательной установки до 90%.

В настоящее время недостаточно глубоко изучен вопрос о базовых количественных закономерностях и эффективных методах организации нового способа нагрева, без знания которых невозможно осуществить его техническую реализацию с высокими технико-экономическими показателями. Указанные закономерности могут быть получены и исследованы путем построения адекватных математических моделей процесса на базе современной методологии численного моделирования, а наиболее эффективные методы его организации (т.е. разработка оптимальных режимов нагрева) – на основе современных методов теории и техники оптимального управления системами с распределенными параметрами.

Поэтому весьма актуальной является задача разработки методов моделирования, управления и оптимизации процесса индукционного нагрева металла с использованием инновационной технологии, решению которой посвящена диссертационная работа.

Диссертация выполнена в соответствии с планом фундаментальных научно-исследовательских работ Самарского государственного технического университета (СамГТУ), выполняемых по заданию Минобрнауки РФ. Работа поддержана грантами Германской Службы Академических Обменов (DAAD) (2007 и 2009 гг.) и выполнялась в рамках Федеральной целевой НИР по программе «Научные и научно-педагогические кадры инновационной России на 2009-2013 годы» (государственные контракты №П321 от 23.07.09, №П1448 от 23.09.09, №П2090 от 3.11.09).

Целью работы является разработка моделей, алгоритмов и систем оптимального управления процессом нагрева алюминиевых заготовок посредством их вращения в магнитном поле, возбуждаемом проводниками со сверхпроводящими обмотками.

Для достижения указанной цели в диссертации решены следующие задачи:

  • адаптация численной модели инновационной технологии нагрева, описывающей взаимосвязанные процессы энергообмена в магнитных и температурных полях, в полях термонапряжений и упругих деформаций, для решения задач анализа параметрических зависимостей базовых характеристик процесса нагрева и синтеза структур алгоритмов оптимизации с максимальной степенью адекватности реальным объектам, недоступной при поиске аналитических приближений;
  • анализ результатов численного моделирования с целью выявления степени адекватности применяемой модели, аналогий с базовыми характеристиками типовой технологии индукционного нагрева в переменном электромагнитном поле и основных физических закономерностей исследуемой инновационной технологии;
  • постановка задачи разработки эффективных режимов реализации инновационной технологии нагрева, как задачи определения такого оптимального программного управления процессом, которое гарантирует достижение заданного конечного температурного состояния с требуемой абсолютной точностью за минимально возможное время в условиях заранее фиксируемых ограничений на допустимый диапазон изменения управляющего воздействия и максимальные величины температуры и термонапряжений в процессе нагрева;
  • поиск решения сформулированной задачи оптимального управления (ЗОУ) на основе альтернансного метода, разработка вычислительной технологии полного расчета характеристик оптимальных алгоритмов управления и определение рациональных способов структурно-параметрического синтеза систем автоматической оптимизации с обратными связями;
  • проведение исследований эффективности исследуемых моделей и алгоритмов оптимального управления инновационной технологией индукционного нагрева.

Методы исследования. Для решения поставленных в диссертационной работе задач использовались методы, основанные на системном подходе к решаемой проблеме, в том числе методы теории оптимального управления системами с распределенными параметрами, теории тепло- и массопереноса, методы численного и компьютерного моделирования, экспериментальные методы исследования технологических объектов с распределенными параметрами.



Научная новизна. Диссертационная работа расширяет и углубляет теоретические представления в области оптимального управления процессами индукционного нагрева металла, реализуемыми путем вращении изделий в магнитном поле постоянного тока, создаваемым в возбудителях со сверхпроводящими обмотками. Данная технология индукционного нагрева является принципиально новой и неизученной с точки зрения оптимальной организации режимов ее функционирования.

Впервые для решения задачи оптимального управления процессом нагрева в индукционных нагревательных установках (ИНУ) инновационного типа используется проблемно-ориентированная численная модель объекта с максимальной степенью адекватности, разработанная в наукоемкой среде ANSYS, адаптированная к применению в автоматической вычислительной процедуре оптимизации и позволяющая в реальном масштабе времени осуществлять поиск оптимальных параметров алгоритмов управления.

Точное (в рамках рассматриваемой математической модели) решение задачи оптимального управления исследуемым процессом нагрева выполнено на основе нового метода параметрической оптимизации нестационарных термодиффузионных процессов.

Выводы и рекомендации диссертационной работы позволяют на качественно более высоком уровне решать инженерные задачи синтеза систем автоматической оптимизации режимов функционирования ИНУ инновационного типа.

Основные научные результаты диссертации, полученные, в отличие от известных, применительно к исследуемой инновационной технологии и позволяющие распространить на этот новый класс перспективных объектов управления конструктивные методики построения численных моделей и решения краевых задач оптимизации систем с распределенными параметрами:

  • предложена и исследована в качестве объекта оптимального управления численная модель процесса индукционного нагрева металлических заготовок, вращающихся в магнитном поле постоянного тока сверхпроводников;
  • предложена формальная постановка задачи оптимизации режимов функционирования ИНУ инновационного типа по критериям быстродействия и расхода энергии без учета основных фазовых ограничений и с их рассмотрением;
  • установлены качественные и количественные закономерности оптимальных процессов нагрева металлических заготовок перед обработкой давлением в процессе их нагрева путем вращения в постоянном магнитном поле по критерию быстродействия;
  • разработаны оптимальные по критериям быстродействия и расхода энергии алгоритмы программного управления режимами работы индукционных нагревательных установок инновационного типа с управляющим воздействием по частоте вращения заготовок;
  • разработаны принципы построения замкнутой системы автоматической оптимизации режимов функционирования ИНУ инновационного типа.

Основные положения, выносимые на защиту:

  1. Проблемно-ориентированные на использование в оптимизационных процедурах модели температурных полей и полей термонапряжений в процессе индукционного нагрева алюминиевых заготовок, вращающихся в магнитном поле постоянного тока.
  2. Постановка и решение задачи оптимального управления процессом индукционного нагрева металлических заготовок, вращающихся в постоянном магнитном поле сверхпроводников, по критериям быстродействия и расхода энергии.
  3. Инженерные методики расчета алгоритмов оптимального управления процессом индукционного нагрева алюминиевых заготовок, вращающихся в магнитном поле постоянного тока с учетом основных технологических ограничений.
  4. Специальное алгоритмическое, математическое и программное обеспечение для автоматизированного расчета алгоритмов оптимального управления процессом нагрева с использованием проблемно-ориентированной численной модели температурных полей и полей термонапряжений.

Реализация результатов исследований. Полученные в работе теоретические положения и практические результаты использованы:

  • при выполнении фундаментальной НИР «Создание основ теории и способов реализации точных методов определения алгоритмов оптимального управления объектами с распределенными параметрами», проводимой в СамГТУ по заданию Минобрнауки РФ;
  • при выполнении НИР, проводимых СамГТУ в рамках Программы совместных научных исследований с Институтом Электротехнологий Университета им. Лейбница (г. Ганновер, Германия) в области оптимизации электротермических процессов;
  • при выполнении НИР по проекту Российского Фонда Фундаментальных Исследований «Разработка методов математического моделирования и оптимального управления взаимосвязанными электромагнитными и тепловыми полями в энерготехнологических процессах и установках промышленных производств» (проект 07-08-00342);
  • при выполнении НИР в рамках Федеральной целевой программой «Научные и научно-педагогические кадры инновационной России на 2009-2013 годы» (государственные контракты №П321 от 23.07.09, №П1448 от 23.09.09, №П2090 от 3.11.09).

Апробация работы. Основные положения и результаты работы докладывались и обсуждались на ХХХII Самарской областной студенческой научной конференции (Самара, 2006 г.); XII Международной научно-практической конференции студентов и молодых ученых «Современные техника и технологии» (Томск, 2006 г.); Всероссийской конференции–конкурсном отборе инновационных проектов студентов и аспирантов по приоритетному направлению “Энергетика и энергосбережение” (Томск, 2006 г.); Международной научно-технической конференции «Проблемы автоматизации и управления в технических системах» (Пенза, 2007 г.); ХХХIII Самарской областной студенческой научной конференции (Самара, 2007 г.); Пятой Всероссийской научной конференции «Математическое моделирование и краевые задачи» (Самара, 2008 г.); Международном Научном Коллоквиуме «Modeling for Electromagnetic Processing» (Ганновер, 2008 г.); Международной научно-технической конференции EUROCON 2009 (Санкт-Петербург, 2009 г.); VI Всероссийской межвузовской конференции молодых ученых (Санкт-Петербург, 2009 г.); Второй международной конференции «Актуальные проблемы теории и практики индукционного нагрева «APIH-09» (Санкт-Петербург, 2009 г.).

Публикации. По теме диссертации опубликовано 18 печатных работ, в том числе 3 статьи в периодических научных изданиях, рекомендованных ВАК России для опубликования результатов кандидатских диссертаций [1-3].

Структура и объем диссертации. Диссертация состоит из введения, 4 глав и заключения, изложенных на 154 страницах машинописного текста, содержит 101 рисунок, 9 таблиц, список литературы из 98 наименований и 2 приложения.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследуемой проблемы, формулируются цель и основные задачи работы, кратко характеризуются научная новизна и практическая ценность полученных результатов, приводятся основные положения, выносимые на защиту.

В первой главе проводится анализ традиционных технологий нагрева металла перед обработкой давлением, в результате которого выявлены основные существенные преимущества индукционного нагрева перед конкурентными технологиями термообработки металла.

Установлена необходимость повышения энергетической эффективности традиционного способа индукционного нагрева металлических изделий в переменном электромагнитном поле, ввиду его низкого коэффициента полезного действия.

Резкое повышение энергетической эффективности обеспечивает принципиально новая энергосберегающая технология индукционного нагрева, осуществляемая путем вращения алюминиевых сплавов в магнитном поле постоянного тока большой мощности, создаваемом практически без энергетических потерь сильноточными возбудителями со сверхпроводящими обмотками (рис. 1). При вращении заготовки с постоянной скоростью в направленном перпендикулярно оси ее вращения магнитном поле магнитный поток изменяется по гармоническому закону, обеспечивая нагрев изделия индуцируемыми вихревыми токами.

Охлаждение и выдержка сверхпроводящей катушки возбуждения при низкой температуре достигается ее размещением в криостате с хладоагентами, в роли которых применяются сжиженные газы с низкими температурами конденсации (азот, водород, гелий и др.).

При этом достаточно малые энергозатраты, связанные с необходимостью обеспечения сверхнизких температур в целях создания эффекта сверхпроводимости, и высокий к.п.д. электропривода вращения заготовки позволяют увеличить общий коэффициент полезного действия нагревательной установки до 90%.

Одними из первых работ в данной области стали работы по исследованию и внедрению данной технологии, выполненные за рубежом в рамках Европейского проекта «ALUHEAT» в 2005-2008 гг. в 6 странах ЕС (Германия, Италия, Финляндия, Польша, Чехия, Норвегия). Известные к настоящему времени теоретические исследования инновационной технологии нагрева алюминиевых заготовок посредством их вращения в магнитном поле постоянного тока связаны, в основном, с вопросами энергосбережения и явлением сверхпроводимости. При этом небольшое число научных работ посвящено исследованиям электромагнитных и тепловых явлений внутри заготовки при её вращении в магнитном поле постоянного тока. Основное внимание при

Рисунок 1 – Принцип индукционного нагрева заготовки, вращающейся в магнитном поле сверхпроводника

изучении данного вопроса уделено исследованиям изменения температурных полей в процессе индукционного нагрева вращающихся заготовок, в то время как вопрос анализа полей термонапряжений по объему нагреваемого тела освещен незначительно, не смотря на существенную значимость этого аспекта с точки зрения учета механи-


Pages:   || 2 | 3 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.