авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |

Многокомпонентные модели и алгоритмы анализа аномальных геофизических сигналов

-- [ Страница 1 ] --

На правах рукописи

Мандрикова Оксана Викторовна

МНОГОКОМПОНЕНТНЫЕ МОДЕЛИ И АЛГОРИТМЫ АНАЛИЗА АНОМАЛЬНЫХ ГЕОФИЗИЧЕСКИХ СИГНАЛОВ

Специальность: 05.13.18 – математическое моделирование, численные

методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Санкт-Петербург - 2009

Работа выполнена в Институте космофизических исследований и распространения радиоволн

Дальневосточное отделение Российской Академии наук (ИКИР ДВО РАН)

Официальные оппоненты:

доктор технических наук, профессор Куприянов М.С.

доктор технических наук, профессор Нечаев Ю. И.

доктор технических наук, профессор Емельянов Г.М.

Ведущая организация – ОАО "Концерн "Океанприбор"

Защита диссертации состоится "__" ______ 2009 г. в часов на заседании совета по защите докторских и кандидатских диссертаций Д 212.238.01 Санкт-Петербургского государственного электротехнического университета "ЛЭТИ" имени В.И. Ульянова (Ленина) по адресу: 197376, Санкт-Петербург, ул. Проф. Попова, 5.

С диссертацией можно ознакомиться в библиотеке университета.

Автореферат разослан "__" _________ 2009 г.

Ученый секретарь совета Пантелеев М.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Настоящая работа посвящена разработке математических моделей для аналитического описания природных сигналов со сложной структурой и построению автоматизированных систем моделирования и прогноза на их основе. Наличие модели природного сигнала, несущего информацию об исследуемом процессе либо явления природы, значительно расширяет возможности их изучения, и позволяет решать задачу предсказания их поведения во времени. Наряду с другими методами исследований, анализ временных рядов систем геофизического мониторинга, регистрирующих вариации геофизических полей, имеет крайне важное значение для решения целого ряда фундаментальных научных задач физики атмосферы, ионосферы, магнитосферы, распространения радиоволн и практических задач обеспечения, в конечном счете, безопасной жизнедеятельности на Земле. На основе прямых экспериментальных данных и на основе соответствующих модельных построений этот подход позволяет получить количественную оценку процессам, формирующимся в той или иной геосфере. Эта тема лежит в общем русле работ фундаментальных научных исследований в области мониторинга и прогнозирования состояния атмосферы, гидросферы и литосферы и технологии снижения риска и уменьшения последствий природных и техногенных катастроф.

Состояние среды является суперпозицией очень большого количества взаимодействий между различными процессами и перед исследователем стоит задача найти способ уменьшить размерность системы и выявить структурные компоненты, наиболее полно описывающие исследуемый природный процесс. В настоящее время наблюдается рост сети станций регистрации геофизических сигналов и вследствие чего возникновение больших массивов статистических данных, развиваются методы их анализа. Это позволяет на принципиально новом уровне решить данную проблему.





В диссертации в первую очередь рассматривается класс задач, связанных с обнаружением и классификацией аномальных эффектов в сигналах регистрации геофизических параметров. Аномальное поведение регистрируемых сигналов может содержать резкие всплески, сопровождаться серией пиков, иметь ступенеобразный вид. Относительная величина и временная протяженность таких аномалий зависит от многих факторов. Эти аномальные особенности содержат полезную информацию об изучаемом процессе и должны быть отображены в модели. Сложная структура возникновения аномалии, а также наличие мешающих факторов различной природы делают невозможным непосредственное применение к ним существующих регрессионных и других статистических моделей временных рядов. Естественным и наиболее эффективным способом представления таких сигналов является построение нелинейных адаптивных аппроксимирующих схем на основе экстраполирующих фильтров. Инструментом, позволяющим реализовать такую процедуру для сигналов с подобными особенностями, является вейвлет-преобразование. В настоящее время ведутся интенсивные исследования по применению этого метода в различных прикладных задачах, связанных с анализом сложных сигналов, возникающих в физике, медицине, финансовом анализе и др. областях. Несмотря на то, что данный метод в последнее время имеет распространение при обработке сигналов в геофизике, общей теории по применению этого аппарата в анализе регистрируемых природных сигналов нет. Данная диссертация восполняет ряд пробелов в этой области. Вейвлет-преобразование в работе является инструментом, лежащим в основе построения моделей сигналов со сложной структурой. Расширяя область традиционных методов моделирования, в диссертационной работе введены математические конструкции, позволяющие построить адаптивную многокомпонентную модель сигнала с учетом внутренней структуры исходных данных и выполнить отображение как характерных, так и изолированных особенностей его структуры. Это играет важную роль в задачах анализа сложных природных сигналов в геофизике, физике, геоэкологии и др. областях. Способы идентификации предложенных моделей основаны на совместном применении моделей авторегрессии-проинтегрированного скользящего среднего и методов нейронных сетей с вейвлет-преобразованием.

Цель работы заключается в разработке математических моделей для аналитического описания природных сигналов со сложной структурой, включающей локальные особенности различной формы и временной протяженности. Сигналы с такими особенностями имеют место в геофизике, физике, медицине, теории управления, финансовом анализе и др. областях.

Проведенные в работе исследования привели к созданию класса моделей, в основе которых лежит математическая конструкция, названная многокомпонентной моделью временного ряда, представляющая исходный временной ряд в виде разномасштабных компонент с различной формой и временной протяженностью. На основе данной конструкции построена общая теория построения модели временного ряда со сложной структурой. Разработаны методы идентификации и оценки моделей, описаны их свойства. Также разработан комплекс методов и алгоритмов обработки данных, основанный на предложенных моделях и служащий теоретической базой для построения автоматизированных систем анализа статистических данных и выполнения прогноза.

При этом решены следующие задачи:

  1. Разработана новая математическая конструкция – многокомпонентная модель временного ряда (ММВР), позволяющая идентифицировать локальные особенности различной формы и временной протяженности в структуре сложного сигнала.
  2. Разработаны способы идентификации ММВР для сигналов со сложной структурой, обеспечивающие выделение существенных компонентов структуры сигнала и эффективное вейвлетное подавление шума.
  3. Разработаны методы оценки параметров ММВР, основанные на совмещении методов авторегрессии-проинтегрированного скользящего среднего (АРПСС) и методов нейронных сетей с вейвлет-преобразованием.
  4. Разработаны численные методы и алгоритмы выявления и классификации изолированных особенностей в структуре сигнала и идентификации устойчивых характеристик временного ряда
  5. Построенный аппарат применен к исследованию геофизических сигналов с широким спектром флуктуаций различных масштабов.
  6. Предложено использование построенного аппарата для оценки плотности распределения случайной величины.
  7. Разработано программное обеспечение для автоматического обнаружения и классификации локальных аномальных особенностей в геофизических сигналах на базе ПЭВМ.

Методы исследований. В развитых автором подходах использовались классические работы по теории вейвлетов, опубликованные на рубеже 90х S. Mallat, L.K. Meyer, D.J. Lemarie, I. Daubechies, R.R. Chui и др., работы отечественных авторов, работы Donoho D. по минимаксным оценкам сигнала в смеси с шумом. В диссертационной работе также использовался аппарат теории случайных процессов, теории цифровой обработки сигналов, теории распознавания образов, теории построения математических моделей, методы вычислительной математики, основы функционального анализа. С целью проверки эффективности новых результатов и синтезируемых на их основе алгоритмов обработки данных, в среде МАТЛАБ выполнялись расчеты, и проводилось математическое моделирование с использованием реальных и модельных сигналов.



Научная новизна состоит в создании и исследовании класса моделей природных сигналов со сложной структурой, в основе которого лежит многокомпонентная модель временного ряда, представляющая исходный сигнал в виде разномасштабных компонент с различной формой и временной протяженностью, в частности:

  1. На основе нелинейных аппроксимирующих схем разработаны методы идентификации структурных компонентов природного сигнала, содержащего изолированные особенности различной формы и временной протяженности. В качестве пространства-образа сигнала определено пространство вейвлет-коэффициентов, обеспечивающее отображение разномасштабных структурных компонентов сигнала в элементы модели. В качестве базовых конструкций, используемых для построения отображения, определены кратномасштабный анализ и вейвлет-пакеты.
  2. Разработаны методы выделения устойчивых характеристик структуры сигнала и изолированных особенностей.
  3. Разработаны численные методы и алгоритмы построения наилучшей аппроксимирующей схемы сложного природного сигнала, обеспечивающие выделение существенных компонентов структуры сигнала и эффективное вейвлетное подавление шума.
  4. Предложен способ оценки многокомпонентной модели временного ряда на основе минимаксного подхода, разработаны способы диагностики и оптимизации модели.
  5. Разработаны два способа оценки параметров модели сигнала: первый основан на совмещении методов АРПСС и вейвлет-преобразования – позволяет выполнить оценку параметров модели в случае, когда компоненты сигнала имеют линейную структуру; второй базируется на совмещении методов нейронных сетей и вейвлет-преобразования – позволяет построить аппроксимирующую функцию частного вида на дискретном множестве значений в случае, когда структура компонент сигнала существенно нелинейная.

А также:

  1. На основе построенной аппроксимирующей схемы сигнала разработана техника идентификации характерных элементов структуры сигнала и выделения редковстречающихся особенностей.
  2. Разработаны способы классификации выделенных локальных особенностей в структуре сигнала.
  3. Впервые предложен метод оценки плотности распределения случайной величины на основе вейвлет-преобразования.

Научная и практическая ценность работы заключается в том, что:

  1. созданы теоретические основы построения моделей сложных природных сигналов, содержащих локальные особенности различной формы и временной протяженности;
  2. разработаны конкретные модели природных сигналов;
  3. предложенный автором метод выделения изолированных особенностей в структуре сигнала стал заметным вкладом в компьютерные методы анализа сложных геофизических сигналов, применяемые в различных лабораториях;
  4. разработанные автором способы классификации локальных особенностей в структуре сигнала используются в программном обеспечении по обработке данных регистрации подпочвенного радона и сигнала критической частоты f0F2;
  5. на основе предложенных автором алгоритмов автоматического обнаружения изменения параметров модели построены системы по обработке ионосферных данных;
  6. разработанный автором метод оценки плотности распределения случайной величины на основе вейвлет-преобразования нашел применение в обработке данных регистрации сейсмического каталога и позволил выявить аномальные изменения в распределении сейсмических событий по глубине накануне сильных землетрясений на Камчатке;
  7. проведены экспериментальные исследования разработанных методов и алгоритмов на реальных и модельных сигналах, подтвердившие их эффективность при обработке сигналов со сложной структурой;
  8. разработанные методы значительно расширяют область применения традиционных методов анализа сложных сигналов, они позволяют идентифицировать те особенности структуры сигнала, которые не попадают в область этих методов, и могут быть использованы для широкого круга задач, в которых необходим анализ сигналов со сложной структурой.

Результаты научных исследований, выполненные автором и представленные в пунктах 1-5, включены в важные научные достижения ДВО РАН в период 2005 – 2007 гг.

Научные положения, выносимые на защиту:

1. Теоретические и методические основы построения многокомпонентной модели сложного природного сигнала, содержащего изолированные особенности различной формы и временной протяженности.

2. Численный метод построения наилучшей аппроксимирующей схемы сложного сигнала, лежащий в основе построения многокомпонентной модели.

3. Способ оценки параметров многокомпонентной модели сигнала на основе совмещения конструкции вейвлет-преобразования и регрессионных методов.

4. Способ оценки параметров многокомпонентной модели на основе совмещения конструкции вейвлет-преобразования и методов нейронных сетей.

5. Численные методы и алгоритмы классификации выделенных изолированных особенностей в структуре сложного сигнала.

6. Методики идентификации моделей природных сигналов применительно к задаче выделения и классификации аномальных особенностей в их структуре.

7. Метод оценки плотности распределения случайной величины на основе вейвлет-преобразования.

Внедрение результатов работы.

Работа выполнялась в рамках:

  1. Договора о научно-техническом сотрудничестве между Институтом вулканической геологии и геохимии ДВО РАН с одной стороны, Камчатским государственным техническим университетом, с другой стороны, и Санкт-Петербургским государственным электротехническим университетом, с третьей стороны по теме “Разработка алгоритмов и методов выделения средне и краткосрочных предвестников сильных землетрясений Петропавловск-Камчатского геодинамического полигона по данным геохимического мониторинга”. Тематика работы связана с программой ГНТП №16 «Безопасность населения и народно-хозяйственных объектов с учетом риска возникновения природных и техногенных катастроф», программа Президиума РАН «Изменение окружающей среды и климата: природные катастрофы».
  2. Договора о научно-техническом сотрудничестве между Институтом космофизических исследований и распространения радиоволн ДВО РАН с одной стороны и Санкт-Петербургским государственным электротехническим университетом, с другой стороны. Тематика работы связана с программами фундаментальных исследований Президиума РАН и находятся на пересечении трех направлений: научная программа № 18 «Теплофизика и механика интенсивных энергетических воздействий» в части «Солнечный ветер: генерация и взаимодействие с Землей и другими планетами», научная программа № 13 «Изменение окружающей среды и климата: природные катастрофы» и программа №30 «Солнечная активность и физические процессы в системе Солнце-Земля».

Работа была поддержана грантом РФФИ №02-05-64467 «Выявление среднесрочных и краткосрочных предвестниковых аномалий перед сильными землетрясениями южной Камчатки с М>6 в вариациях динамики подпочвенного радона, водорода и пространственно – временных характеристик сейсмичности», грантом РФФИ для студентов, аспирантов и молодых ученых №03-05-06453а, грантом ДВО РАН №05-3-В-02-76 «Исследование механизмов ионосферного и литосферного взаимодействия», грантом ДВО РАН №06-3-В-02-059 «Исследование механизмов формирования вероятностной структуры распределения сейсмических событий на основе статистической модели сейсмического режима Камчатского региона».

Научные результаты и разработанное программное обеспечение внедрены в лаборатории ИКИР ДВО РАН, г. П.-Камчатский, а также используются в учебном процессе при проведении лабораторных и курсовых работ по курсу «Системы цифровой обработки сигналов», «Моделирование систем» для студентов специальностей «Управление и информатика в технических системах» и «Программное обеспечение вычислительной техники и автоматизированных систем» в КамчатГТУ.

Апробация полученных результатов. Основные положения и результаты работы докладывались и обсуждались на научно-технических конференциях КамчатГТУ в 2000-2008 гг.; на Всероссийской научной конференции "Проектирование научных и инженерных приложений в среде Matlab".- Москва: ИПУ РАН 2002г; на Международной научно-практической конференции “Рыбохозяйственное образование Камчатки в XXI веке”. - Петропавловск-Камчатский, 15-16 октября 2002 г.; на Международной конференции по мягким вычислениям и измерениям, - С.-Петербург, 2003, 2005-2008 г.г.; на III международной конференции «Солнечно-земные связи и электромагнитные предвестники землетрясений», -П.-Камчатский, 2004г.; на IV международном совещании «Солнечно-земные связи и предвестники землетрясений», с. Паратунка, Камчатский р-он, 2007г.; на 8ой международной конференции «Pattern recognition and image analysis: new information technologies», Йошкар-Ола, 2007г.; на 10ой международной научной конференции «Проблемы эволюции открытых систем», Казахстан, Алматы, 2008г.; на 5ой научной конференции «Управление и информационные технологии», (УИТ-2008), Санкт-Петербург, 2008г.

Материалы диссертации докладывались на семинарах в институте вулканической геологии и геохимии ДВО РАН (П.-Камчатский); институте космофизических исследований и распространения радиоволн ДВО РАН (П.-Камчатский).

Публикации. По теме диссертации опубликовано 37 печатных работ, из них - 17 статей (9 статей, рекомендованных в Перечне ВАК Минобрнауки России), 18 докладов на международных и всероссийских научно-технических конференциях и 2 монографии. 2 статьи, определенные ВАК, находятся в печати.

Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения и списка литературы, включающего 134 наименования и 3 приложения. Основная часть работы изложена на 270 страницах машинописного текста и содержит 91 рисунок и 18 таблиц.

СОДЕРЖАНИЕ И ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

Во введении показана и обоснована актуальность работы, сформулированы основные цели и задачи, научная новизна и практическая ценность диссертационной работы.



Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.