авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 |

Моделирование процессов взаимодействия диоксинов со структурными элементами клеточной мембраны

-- [ Страница 1 ] --

На правах рукописи

Очередко юлия александроВНА

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ВЗАИМОДЕЙСТВИЯ ДИОКСИНОВ СО СТРУКТУРНЫМИ ЭЛЕМЕНТАМИ

КЛЕТОЧНОЙ МЕМБРАНЫ

Специальность 05.13.18 – Математическое моделирование,

численные методы и комплексы программ

Автореферат

диссертации на соискание ученой степени

кандидата технических наук

Астрахань – 2010

Работа выполнена в ГОУ ВПО «Астраханский государственный университет».

Научный руководитель: доктор химических наук, профессор

Алыков Нариман Мирзаевич

Официальные оппоненты: кандидат физико-математических наук,

доцент

Коваленко Илья Борисович

доктор физико-математических наук,

профессор

Элькин Михаил Давыдович

Ведущая организация: ФГУП «Научно-исследовательский институт гигиены, токсикологии и профпатологии» ФМБА России, г. Волгоград

Защита состоится «18» декабря 2010 г. в 13:00 часов на заседании диссертационного совета ДМ 212.009.03 при Астраханском государственном университете по адресу: 414056, г. Астрахань, ул. Татищева, 20 а, конференц-зал.

С диссертацией можно ознакомиться в библиотеке Астраханского государственного университета. Автореферат диссертации размещен на сайте университета www.aspu.ru.

Автореферат разослан «___» _________ 20__г.

Ученый секретарь диссертационного

совета, к.т.н. О. В. Щербинина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность. Одной из важнейших проблем, угрожающих состоянию окружающей среды, является накопление большого количества чрезвычайно токсичных химических веществ, способных влиять на живые организмы.

Ведущее место среди токсикантов занимают диоксин и диоксиноподобные вещества, которые являются отходами или побочными продуктами (микропримесями) в целом ряде технологий и получаются только искусственным путем. В последние полвека их производится все больше и больше. Диоксины выбрасываются в окружающую среду и накапливаются в ней, не разлагаясь в течение длительного времени. Клинические проявления диоксиновой интоксикации весьма разнообразны и неспецифичны, что существенно затрудняет диагностику поражений, антидоты отсутствуют, а патогенетическая симптоматическая терапия малоэффективна.

В ряде случаев, как для цели их детоксикации, так и для аналитического определения, требуется знание механизма воздействия диоксинов на различные биологические структуры, в том числе и на биологические мембраны. Однако, в связи с их чрезвычайной токсичностью провести эксперимент невозможно. В этом случае математическое моделирование, как особый метод прогнозирования свойств изучаемого объекта, выступает удобным инструментом для развития науки о влиянии диоксинов на живые организмы. Компьютерное моделирование позволяет смоделировать ту или иную ситуацию, не подвергая опасности кого бы то ни было.

Цель и задачи исследования. Целью данной работы является создание математической модели процессов воздействия диоксинов на компоненты биологической мембраны. Это позволит выявить активные центры на поверхности макромолекулярной системы, подверженной воздействию диоксинов.

Для решения поставленной цели предусмотрено решение следующих задач:

  • Разработка алгоритма моделирования взаимодействия диоксиноподобных соединений с компонентами клеточной мембраны и выбор программного обеспечения для решения поставленной цели;
  • Разработка модели описания взаимодействий диоксинов со структурными элементами клеточных мембран;
  • Усовершенствование формулы для расчета энергии межмолекулярного взаимодействия;
  • Создание программы с целью обработки результатов квантовых расчетов;
  • На основании проведенных расчетов установление наиболее вероятных мишеней – активных центров, атака которых приводила бы к соединениям высокой прочности;
  • Создание базы данных взаимодействия диоксин - компонент биологической мембраны.

Методы исследований. С целью выяснения механизма сорбционного концентрирования токсиканта на поверхность биологических мембран были проведены расчеты моделей адсорбционных комплексов (АК) методами квантовой химии. Квантово-химические расчеты для адсорбционных комплексов проводились с использованием кластерного подхода методом РМ3 в программном комплексе МОРАС в рамках приближения Хартри-Фока, с полной оптимизацией геометрии молекул. Начальная геометрия молекул сорбата и сорбента выбиралась по справочным данным, заложенным в систему МОРАС. Были изучены конфигурации молекул с помощью программного комплекса ChemOffice, в результате чего составлена z-матрица.

Научная новизна. Разработана математическая модель в виде молекулярного графа процессов взаимодействия диоксиноподобных соединений с макромолекулярными структурами, которая позволяет оценивать адсорбционные процессы, происходящие на поверхности клеточной мембраны.

Предложена объединенная формула для расчета энергии межмолекулярного взаимодействия.

Разработана программа, позволяющая обработать результаты квантовых расчетов и на их основе с использованием предложенной формулы рассчитать энергии взаимодействия.

На защиту выносятся следующие положения:

  • математическая модель в виде молекулярного графа и алгоритм математического моделирования процессов воздействия диоксинов на структурные элементы клеточной мембраны;
  • квантово-химические расчеты для установления геометрии молекул и сопоставление результатов с известными данными;
  • формула, позволяющая в один этап рассчитать энергии межмолекулярного взаимодействия, необходимые для построения графов;
  • методика определения активных центров на молекулярных графах структурных компонентов мембраны, максимально подверженных воздействию со стороны диоксинов;
  • программа для ЭВМ «Автоматизация расчетов основных энергетических характеристик при моделировании межмолекулярных взаимодействий»;
  • база данных воздействия диоксинов на компоненты клеточной мембраны.

Практическая значимость. Создана программа, позволяющая обрабатывать результаты квантовых расчетов и автоматизировать расчеты энергетических характеристик.

Разработана концептуальная модель базы данных, которая позволяет структурировать результаты квантово-химических расчетов молекул диоксиноподобных соединений, компонентов клеточной мембраны – полипептидов, липидов, полисахаридов, а также образующихся в результате взаимодействия адсорбционных систем.

Результаты диссертационной работы используются в учебном процессе по дисциплинам: «квантовая механика и квантовая химия», «экология на стыке математики, физики и химии».

Апробация работы. Результаты исследований доложены на различных Международных и Всероссийских научных конференциях, среди которых: «Эколого-биологические проблемы бассейна Каспийского моря» (Астрахань, 2006); III школа-семинар «Квантовохимические расчеты: структура и реакционная способность органических и неорганических молекул» (Иваново, 2007); «Экология биосистем: проблемы изучения, индикации и прогнозирования» (Астрахань, 2007); «Фундаментальные и прикладные проблемы современной химии» (Астрахань, 2008); «Инновационные технологии в управлении, образовании, промышленности АСТИНТЕХ-2009» (Астрахань, 2009); «Инновационные технологии в управлении, образовании, промышленности АСТИНТЕХ-2010» (Астрахань, 2010).

Публикации. По материалам диссертации опубликовано 10 научных работ, в том числе в 2 статьях в периодических и научно-технических изданиях, выпускаемых в РФ, в которых ВАК рекомендует публикацию основных научных результатов.

Структура и объём диссертации. Диссертация состоит из введения, трёх глав, заключения, приложения и библиографического списка (112 наименований). Работа изложена на 124 страницах текста, содержит 18 рисунков, 8 z-матриц и 18 таблиц. В приложении имеется 2 акта о внедрении результатов диссертационных исследований в учебный процесс.

СОДЕРЖАНИЕ РАБОТЫ


Во введении обоснована актуальность темы, научная новизна, практическая значимость, сформулированы цели и задачи исследования.

Первая глава посвящена обзору математических методов и моделей, описывающих межмолекулярные взаимодействия. В результате предложен собственный вариант блок-схемы создания математической модели взаимодействия диоксинов со структурными элементами клеточной мембраны.

Самой известной математической моделью химии является молекулярный граф. Молекулярный граф — связный неориентированный граф, находящийся во взаимно-однозначном соответствии со структурной формулой химического соединения таким образом, что вершинам графа соответствуют атомы молекулы, а рёбрам графа — химические связи между этими атомами. Структура молекул может быть удобно изображена на языке теории графов, что не просто приводит к новой формализации, но имеет эвристическое значение. Матричные представления молекулярных графов связываются с матричными методами квантовой химии.

В силу квантового характера движения электронов и ядер решение задачи нахождения межмолекулярных взаимодействий сводится, строго говоря, к решению уравнения Шредингера для системы взаимодействующих молекул.

Н(R/,r/) = E(R/,r/), (1)

где гамильтониан системы при пренебрежении релятивистскими взаимодействиями имеет в атомной системе единиц следующий вид:

(2)

Все радиус-векторы отсчитываются от начала лабораторной системы координат, Ма – масса ядра а в атомной системе единиц, т.е. в единицах массы электрона, Za – заряд ядра а.

Уравнение (1) может быть решено только приближенно.

Один из наиболее эффективных методов приближенного решения электронного уравнения Шредингера был предложен впервые в работах Хартри и Фока и носит название метода Хартри-Фока или метода самосогласованного поля. Уравнение Хартри-Фока для электронной конфигурации с замкнутыми оболочками имеет вид:

(3)

с одноэлектронным оператором

(4)

который принято называть оператором Фока или фокианом.

Рутан и независимо Холл предложили представить варьируемые функции в виде линейных разложений по заданному базисному набору {q} и варьировать только коэффициенты сqn в этих разложениях:

(5)

В результате интегро-дифференциальное уравнение Хартри-Фока для орбиталей заменяется системой нелинейных алгебраических уравнений для коэффициентов, записываемой в матричном виде как

(6)

где F и S –квадратные матрицы порядка на базисных функциях q, F – матрица оператора , S – матрица интегралов перекрывания ‹qr›, сn – одностолбцовая матрица искомых коэффициентов сnq. Уравнение (6) принято называть уравнением Рутана.

Все основные расчетные методы современной квантовой химии используют приближение молекулярных орбиталей (МО) в форме схемы ЛКАО (линейная комбинация атомных орбиталей, английская аббревиатура – LCAO) МО Хартри-Фока-Рутана (или метод самосогласованного поля (ССП)).

Рассмотренные модель и метод легли в основу математической модели взаимодействия диоксинов с компонентами мембраны, алгоритм создания которой приведен на рисунке 1.

Выбор взаимодействующих молекул
Диоксиноподобные соединения Компонент биологической мембраны
ПХФ ПХДД ПХДФ ПХБ белок липид фосфолипид углевод
оптимизация оптимизация
Моделирование взаимодействия диоксин - компонент мембраны
Расчет геометрических и энергетических характеристик
Соответствие характеристик нет выбранным критериям
да
Выбор АК с наиболее глубоким минимумом Еадс.
Определение наиболее активных центров на поверхности молекул
Математическая модель


Pages:   || 2 | 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.