авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |

Разработка алгоритмов и программ решения уравнения переноса в ядерных реакторах методом поверхностных гармоник

-- [ Страница 1 ] --

Российский научный центр «Курчатовский институт»

На правах рукописи

УДК 621.039.5

Бояринов Виктор Федорович

РАЗРАБОТКА АЛГОРИТМОВ И ПРОГРАММ РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА В ЯДЕРНЫХ РЕАКТОРАХ МЕТОДОМ ПОВЕРХНОСТНЫХ ГАРМОНИК

Специальность 05.13.18 – Математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Москва – 2009

Работа выполнена в Институте ядерных реакторов Российского Научного Центра «Курчатовский институт».

Официальные оппоненты:

Доктор технических наук,

Краюшкин Александр Викторович

Доктор технических наук

Точеный Лев Васильевич

Доктор физико-математических наук, профессор

Щукин Николай Васильевич

Ведущая организация:

Институт прикладной математики им. М. В. Келдыша РАН

Защита состоится «____»__________20 г. в ____________час_____мин

на заседании диссертационного совета Д520.009.06 при РНЦ «Курчатовский институт» по адресу: 123182, Москва, пл. И.В. Курчатова 1.

С диссертацией можно ознакомиться в библиотеке РНЦ «Курчатовский институт».

Автореферат разослан «____»__________2009г.

Ученый секретарь диссертационного совета

Д.т.н., профессор В.Г. Мадеев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

В связи с планируемым ускорением развития ядерной энергетики возрастают требования к ее безопасности, и, следовательно, к точности, надежности и оперативности предсказания поведения ядерных энергетических объектов в различных ситуациях. За последние годы происходило заметное развитие методов, алгоритмов и расчетных кодов для решения уравнения переноса излучения для различных ядерных приложений, связанное в первую очередь с бурным развитием вычислительной техники, с появлением возможности рассчитывать прямыми численными методами задачи большой размерности, например, полномасштабные ядерные энергетические реакторы. Методы решения уравнения переноса излучения можно разделить на следующие группы:

– Метод Монте-Карло.

– Прямые детерминистические методы: метод характеристик, SN метод, метод вероятностей первых столкновений и др.

– Инженерные методы: как правило, в той или иной форме используют приближение пространственной гомогенизации, диффузионный или нодальный диффузионный метод, сочетание прямых и нодальных диффузионных методов.

Решение уравнения переноса нейтронов во всем объеме современных ядерных реакторов даже на современных компьютерах является достаточно тяжелой задачей. При этом, прямые детерминистические методы, такие как метод характеристик, SN метод и другие, в принципе, с такой задачей справляются, но, как правило, с весьма значительными вычислительными затратами.

Инженерные подходы, как правило, основываются на том или ином механизме пространственной гомогенизации и дальнейшем решении системы малогрупповых диффузионных уравнений, в том числе и с привлечением нодальных методов. При этом, вычислительные затраты инженерных подходов вполне удовлетворительные. Приемлемая точность расчета достигается за счет настройки инженерных программ на расчеты определенных состояний конкретного аппарата с помощью корректирующих параметров, основанных на результатах более точных расчетов, на результатах экспериментов на сборках и стационарных измерений на реакторах. Однако даже используемые в этих программах поправки не гарантируют корректного описания поведения реактора вдали от этих состояний и при аварийных ситуациях.





Поэтому очень важными являются работы, нацеленные на замену инженерных методов и программ расчета реактора на методы и программы нового поколения, не использующие метод гомогенизации и диффузионное приближение, решающие уравнение переноса во всем объеме реактора непосредственно на основе файлов ядерных данных и при этом имеющие небольшие вычислительные затраты. Данная диссертация делает крупный шаг в этом направлении.

Особое место среди методов решения уравнения переноса занимает метод поверхностных гармоник (МПГ), предложенный проф. Н.И. Лалетиным. Метод поверхностных гармоник занимает промежуточное место между детерминистическими и инженерными методами и обладает достоинствами первых по точности расчета и вторых по вычислительным затратам. Метод поверхностных гармоник является методом решения уравнения переноса нейтронов во всем объеме ядерного реактора и позволяет заменить решение одной задачи большой размерности на решение большого числа задач существенно меньшей размерности и, как следствие, имеет небольшие вычислительные затраты.

Важной особенностью метода поверхностных гармоник является то, что уже в низших приближениях метода достигаются приемлемые для практики точности расчета основных нейтронно-физических функционалов, сравнимые с точностями прямых детерминистических методов, и небольшие вычислительные затраты, сравнимые с вычислительными затратами инженерных методов. Это связано, в первую очередь, с тем, что пробные решения упорядочены по степени их важности, по степени их влияния на основные нейтронно-физические функционалы. В начале 90-х годов, когда начиналась работа над данной диссертацией, уже были заложены основные положения метода поверхностных гармоник: получены основные двумерные и трехмерные конечно-разностные уравнения для разных типов решеток, разработаны программы для расчета симметричных и антисимметричных пробных решений в гетерогенных ячейках.

Однако программная реализация полученных конечно-разностных уравнений метода поверхностных гармоник практически отсутствовала. Поэтому проверка полученных уравнений проводилась с использованием существующих программ решения конечно-разностного группового уравнения диффузии с дополнительными приближениями и только с использованием первых трех пробных решений. Кроме этого, возникала необходимость получения дополнительных конечно-разностных уравнений, в частности, уравнений для конечных по высоте систем и др., а также необходимость разработки алгоритмов реализации этих уравнений как внутри ТВС, так и во всем реакторе. Поэтому актуальной является решение крупной научной проблемы по повышению точности, надежности и оперативности предсказания нейтронно-физических характеристик ядерных реакторов в различных ситуациях путем разработки эффективных методик и алгоритмов метода поверхностных гармоник.

Цель работы – повышение точности, надежности и оперативности предсказания нейтронно-физических характеристик ядерных реакторов путем разработки эффективных алгоритмов метода поверхностных гармоник, сочетающих в себе достоинства прямых детерминистических методов по точности расчета и инженерных методов по вычислительным затратам, их программной реализации, верификации и применения для решения нейтронно-физических задач.

Для достижения поставленной цели автор решил следующие задачи:

  1. Развитие метода поверхностных гармоник, получение новых конечно-разностных уравнений и разработка алгоритмов для двумерного и трехмерного расчета нейтронно-физических процессов в ядерных реакторах с квадратной и треугольной решетками.
  2. Создание программного комплекса SUHAM, реализующего основные двумерные и трехмерные конечно-разностные уравнения метода поверхностных гармоник для реакторов с квадратной и треугольной решетками.
  3. Детальная верификация разработанных методик и программного обеспечения, демонстрация применения и эффективности.
  4. Разработка и внедрение эффективной уточненной методики подготовки групповых сечений ТВС ГТ-МГР.

Научная новизна результатов работы состоит в следующем:

– Разработаны и программно реализованы алгоритмы решения двумерных групповых конечно-разностных уравнений метода поверхностных гармоник в ядерных реакторах с квадратной и треугольной решетками с разным числом пробных матриц на каждую ячейку.



– Разработаны и программно реализованы алгоритмы метода поверхностных гармоник для расчета пробных матриц в полиячейках реакторов с квадратной решеткой и в ТВС реакторов с треугольной решеткой.

– Получены формулы для трехэтапного расчета двумерного реактора с шестигранными ТВС методом поверхностных гармоник, а также формулы расчета локальных нейтронно-физических функционалов.

– Получены новые трехмерные конечно-разностные уравнения метода поверхностных гармоник.

– Создан комплекс программ SUHAM для решения нейтронно-физических задач в ядерных реакторах, реализующий конечно-разностные уравнения МПГ, описанные в диссертации. Проведены:

  • детальная верификация комплекса SUHAM на большом числе бенчмарков;
  • исследование эффекта пространственной гомогенизации ячеек;
  • исследование влияния высших пространственных гармоник на точность расчета;
  • применение комплекса SUHAM для исследования методической составляющей неопределенности расчета весов стержней СУЗ в активной зоне реактора БРЕСТ-ОД-300;

– Разработана и внедрена в практику расчетов ГТ-МГР в РНЦ КИ и ОКБМ эффективная уточненная методика подготовки групповых сечений ТВС ГТ-МГР.

Достоверность и обоснованность уравнений, формул, алгоритмов и комплекса программ SUHAM подтверждена большим объемом верификационного материала для ядерных реакторов разных типов.

Практическая ценность полученных результатов определяется, во-первых, тем, что уравнения, формулы и алгоритмы ориентированы на любые типы реакторов, которые характеризуются регулярной решеткой того или иного типа, и, во-вторых, тем, что практически все уравнения и формулы программно реализованы (комплекс SUHAM) и верифицированы.

Проведено исследование эффекта пространственной гомогенизации ячеек.

Показана важность учета гетерогенных эффектов при расчете весов стержней СУЗ в активной зоне реактора БРЕСТ-ОД-300.

Разработанная поэтапная уточненная методика подготовки групповых сечений ТВС ГТ-МГР внедрена в практику расчетов ГТ-МГР в РНЦ КИ и ОКБМ. Использование разработанной методики позволило снизить погрешность расчета критичности ТВС ГТ-МГР до 1 %.

Апробация работы

Основные положения диссертации докладывались на следующих конференциях и семинарах:

– Семинары по проблемам физики реакторов (МИФИ, СОЛ “ВОЛГА”, 1995, 2002, 2004, 2006, 2008);

– Семинары по нейтронно-физическим проблемам атомной энергетики “НЕЙТРОНИКА” (г. Обнинск, 1999, 2004, 2005, 2006, 2007, 2008);

– Международные конференции по математическим методам и расчетам ядерных реакторов M&C (Саратога, США, 1997; Мадрид, Испания, 1999; Гатлинбург, США, 2003; Авиньон, Франция, 2005; Монтерей, США, 2007; Саратога, США, 2009);

– Международные конференции по физике ядерных реакторов “PHYSOR” (Марсель, Франция, 1990; Сеул, Корея, 2002; Ванкувер, Канада, 2006; Интерлэйкен, Швейцария, 2008);

– Международные конференции по ядерным технологиям, Kerntechnik (Карлсруе, Германия, 1999; Бон, Германия, 2000);

– 2й международный тематический семинар по технологии ВТГР, INET (Пекин, Китай, 2004).

– Международные семинары OECD/NEA по анализу расчетной неопределенности при моделировании реакторов (Пиза, Италия, 2006; Гарчинг, Германия, 2008).

– 3й международный семинар OECD/NEA по реакторным системам (Париж, Франция, 2006).

Отдельные части представленной работы отмечены премией ИАЭ им. И.В. Курчатова за лучшую научную работу в 1997 г.

Публикации

По результатам исследований опубликовано 55 работ, в том числе 15 в ведущих рецензируемых научных журналах.

Личный вклад автора

Все основные результаты диссертации получены лично автором.

Автору диссертации принадлежат:

– Программно реализованные и верифицированные алгоритмы решения двумерных групповых конечно-разностных уравнений метода поверхностных гармоник в ядерных реакторах с квадратной и треугольной решетками с разным числом пробных матриц на каждую ячейку.

– Алгоритмы метода поверхностных гармоник для расчета пробных матриц в полиячейках реакторов с квадратной решеткой и в ТВС реакторов с треугольной решеткой.

– Формулы и программно реализованные алгоритмы расчета локальных нейтронно-физических функционалов при трехэтапном расчете двумерного реактора с шестигранными ТВС.

– Новые трехмерные конечно-разностные уравнения метода поверхностных гармоник.

– Комплекс программ SUHAM для решения нейтронно-физических задач в ядерных реакторах и его верификация; комплекс SUHAM-U создан в рамках проекта МНТЦ под руководством и непосредственном участии автора.

– Исследование эффекта пространственной гомогенизации ячеек, а также влияния высших пространственных гармоник на точность расчета.

– Применение комплекса SUHAM для исследования методической составляющей неопределенности расчета весов стержней СУЗ в активной зоне реактора БРЕСТ-ОД-300.

– Поэтапная уточненная методика подготовки групповых сечений ТВС ГТ-МГР и ее верификация.

Основные положения, выносимые на защиту

– Программно реализованные и верифицированные алгоритмы решения двумерных групповых конечно-разностных уравнений метода поверхностных гармоник в ядерных реакторах с квадратной и треугольной решетками с разным числом пробных матриц на каждую ячейку.

– Алгоритмы метода поверхностных гармоник для расчета пробных матриц в полиячейках реакторов с квадратной решеткой и в ТВС реакторов с треугольной решеткой.

– Формулы и программно реализованные алгоритмы расчета локальных нейтронно-физических функционалов при трехэтапном расчете двумерного реактора с шестигранными ТВС и их верификация.

– Новые трехмерные конечно-разностные уравнения метода поверхностных гармоник.

– Комплекс программ SUHAM для решения нейтронно-физических задач в ядерных реакторах и его верификация.

– Исследование эффекта пространственной гомогенизации ячеек, а также влияния высших пространственных гармоник на точность расчета.

– Поэтапная уточненная методика подготовки групповых сечений ТВС ГТ-МГР и ее верификация.

Структура и объем работы

Диссертационная работа изложена на 265 страницах текста, включая 52 рисунка, 67 таблиц, состоит из введения, четырех глав, заключения, 5 приложений и списка литературы из 123 наименований.

СОДЕРЖАНИЕ работы

Во введении обосновывается актуальность работы, формулируется цель, изложены научная новизна, практическая ценность, достоверность полученных результатов, личный вклад автора, а также положения, выносимые на защиту.

Первая глава посвящена двумерным уравнениям и алгоритмам метода поверхностных гармоник, реализованным в комплексе программ SUHAM.

Приведено новое изложение основ метода поверхностных гармоник, которое не меняет их сути, но, по мнению автора, более простое для понимания. Новое изложение основано на следующих положениях.

Если считать известными реальные граничные условия, которые реализуются в ядерном реакторе на границах всех ячеек, то расчет реактора сводится к отдельным расчетам всех ячеек с заданными граничными условиями. При этом решение одной задачи большой размерности сводится к решению большого числа задач существенно меньшей размерности. Граничное условие на внешней границе отдельной ячейки можно представить в виде линейной комбинации известных линейно-независимых граничных условий с неизвестными коэффициентами, а именно, в виде.

где – неизвестные групповые амплитуды;

– векторы неизвестных групповых амплитуд.

– система групповых векторов, определяющих модельные граничные условия;

Векторы распределены по границе ячейки по одной из координатных функций (см. рисунки 1 и 2). По энергетическим группам – это система единичных векторов.

  Схема втекания токов,-5

  Схема втекания токов,-6  Схема втекания токов,-7

Рисунок 1 – Схема втекания токов, соответствующая первым восьми координатным функциям для ячейки с квадратной границей

  Схема втекания токов,-8

Рисунок 2 – Схема втекания токов, соответствующая первым шести координатным функциям для ячейки с гексагональной границей

В соответствии с этим представлением общее решение уравнения переноса в ячейке (или ТВС) можно представить в виде линейной комбинации пробных групповых решений с теми же коэффициентами.

Здесь – решение группового уравнения переноса нейтронов в ячейке (пробный групповой вектор) с граничным условием, определяемым вектором . Пробная матрица состоит из G пробных векторов , g=1, 2,…,G.

Далее в первой главе приведена полученная автором система двумерных конечно-разностных уравнений МПГ для квадратной решетки с восемью пробными матрицами на каждую ячейку в том виде, в котором она реализована в комплексе SUHAM (подробный вывод приведен в Приложении 1 к диссертации).

,

Здесь – неизвестные групповые векторы (являются функционалами исходных неизвестных векторов ), связанные с разным законом втекания нейтронов в k-ю ячейку; – разные конечно-разностные операторы.

Конечно-разностные уравнения для меньшего числа пробных матриц являются частными случаями полученной системы. Для полученных конечно-разностных уравнений автором расписаны следующие граничные условия:

– граничное условие нулевых токов или потоков;

– альбедное граничное условие;

– периодическое граничное условие;

– неоднородные граничные условия заданных граничных токов или потоков.

Все перечисленные конечно-разностные уравнения с разным числом пробных матриц и с разными граничными условиями реализованы автором в комплексе программ SUHAM.

Далее в первой главе приведены реализованные автором в комплексе программ SUHAM двумерные конечно-разностные уравнения МПГ для треугольной решетки с шестью пробными матрицами на каждую ячейку и соответствующие граничные условия.

Конечно-разностные уравнения для меньшего числа пробных матриц являются частными случаями приведенной системы.

В Приложениях 2 и 3 к диссертации кратко описаны используемые автором алгоритмы решения конечно-разностных уравнений МПГ соответственно для квадратной и треугольной решеток, реализованные в комплексе программ SUHAM. Отметим здесь основные этапы реализованных алгоритмов при решении задачи на собственное значение:



Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.