авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Галогензамещенные пентен-, пентандионы, их конденсированные аналоги в синтезе n,o,s-содержащих гетероциклических соединений

-- [ Страница 1 ] --

На правах рукописи

Пчелинцева Нина Васильевна

ГАЛОГЕНЗАМЕЩЕННЫЕ ПЕНТЕН-, ПЕНТАНДИОНЫ,

ИХ КОНДЕНСИРОВАННЫЕ АНАЛОГИ В СИНТЕЗЕ

N,O,S-СОДЕРЖАЩИХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

02.00.03 – органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора химических наук

Саратов - 2008

Работа выполнена на кафедре органической и биоорганической химии ГОУ ВПО «Саратовский государственный университет им.Н.Г.Чернышевского»

Научный консультант: доктор химических наук, профессор

Федотова Ольга Васильевна

Официальные оппоненты:

- доктор химических наук, профессор Юровская Марина Абрамовна

- доктор химических наук, профессор Древко Борис Иванович

- доктор химических наук, профессор Гунькин Иван Федорович

Ведущая организация: Воронежский государственный университет

Защита состоится «_29__» __декабря_________ 2008 г. в _14__ часов

на заседании диссертационного совета Д 212.243.07 при Саратовском государственном университете им.Н.Г.Чернышевского по адресу: 410012, Саратов, ул.Астраханская, 83, корпус 1, химический факультет СГУ

С диссертацией можно ознакомиться в Научной библиотеке Саратовского государственного университета им. Н.Г.Чернышевского.

Автореферат разослан «_22_» __ноября____ 2008 г.

Ученый секретарь

диссертационного совета

Сорокин В.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Современное развитие теоретической органической химии и ее прикладных областей требует создания новых методов, позволяющих существенно расширить возможности конструирования новых функционализированных ациклических, карбо- и O,N,S,-содержащих гетероциклических соединений. Поэтому разработка таковых на основе доступных и высоко реакционноспособных (ди)карбонильных соединений является актуальной задачей.

Особый интерес среди них представляют непредельные 1,5-дикетоны ациклического, полуциклического и бициклического рядов. Внимание к ним с позиций теоретической и экспериментальной органической химии определяется разнообразием имеющихся активных центров – С=С связи, карбонильных групп, отличающихся по нуклеофильности вследствие сопряжения либо отсутствия такового, подвижных атомов водорода в -по-ложении к карбонильным функциям, определяющим возможность протекания реакций присоединения, замещения, гетероциклизации, а также близостью к природным и биологически активным веществам.

Интерес к непредельным 1,5-дикетонам был проявлен еще в начале XX века Дильтеем, в 60-80 годы Фишером и Балабаном изучены некоторые превращения 2-пентен-1,5-дионов в присутствии кислот и ограниченно нуклеофильных реагентов. Хотя к началу наших исследований научное направление Саратовской школы химиков-органиков в области 1,5-ди-карбонильных соединений практически сформировалось, оставались незатронутыми вопросы синтеза конденсированных, в том числе бензаннелированных пентендионов, строения, влияния сопряжения, его характера на электрофильные (галогенирование) и нуклеофильные (O,S,N-гетероциклизация) реакции. Вместе с тем, введение галогена (хлора, брома) в структуру пентендионов, их насыщенных и конденсированных аналогов представляло несомненный интерес в связи с открывающейся перспективой развития новых фундаментальных направлений в химии 1,5-дикарбонильных соединений, включая задачи сравнительной химии и построения корреляционных зависимостей «структура-свойство» в рядах родственных соединений.



Настоящая работа выполнена в русле указанных проблем и представляет собой часть плановых научно-исследовательских работ, проводимых на кафедре органической и биоорганической химии Саратовского госуниверситета по теме «Теоретическое и экспериментальное исследование новых материалов и систем с заданными физико-химическими свойствами» (рег. № 3.4.03), при поддержке государственных научно-технических программ МНТП «Общая и техническая химии» МОПО РФ (проект № 01.0106.Ф), гранта № 06-03-32667а Российского фонда фундаментальных исследований.

Главная цель настоящей работы заключалась в разработке основ нового научного направления – химии галогензамещенных пентен-, пентандионов и конденсированных аналогов, включая вопросы направленного синтеза, стереостроения, выявления закономерностей и специфики их превращений в нуклеофильных реакциях, приводящих к N,O,S-гетероциклизации; вероятных схем образования галогензамещенных пяти-, шести-, семичленных гетероциклических соединений и изыскание путей их возможного практического применения.

Научная новизна. Разработаны вопросы теории образования моно-, ди-, тригалогензамещенных пентен-, пентандионов и их конденсированных аналогов: пропилиден(пропанонил)-циклогексанонов, -тетрагидронафта-линонов, позволившие выявить закономерности и специфику реакций галогенирования в зависимости от условий, строения субстрата и природы реагента.

Обнаружены общие тенденции галогенирования в рядах непредельных, насыщенных диоксосоединений - электрофильное присоединение по кратной и енольной С=С связям.

Найдены новые реакции:

- карбоциклизации пропанонилциклогексанонов в бициклононенолоны, являющихся интермедиатами основного гидролиза солей тетрагидро-хроменилия;

- прямого перехода солей пирилия, тетрагидро- и бензодигидрохроме-нилия в дихлорпентендионы, полифункциональность которых может быть использована для построения нового типа пяти-, шести-, семичленных гетероорганических соединений;

- гетероциклизации галогензамещенных пентен-, пентандионов и пропанонилтетрагидронафталинонов в (хлорзамещенные)ароилфураны различной степени насыщенности, оксопропилциклогексан-1,3-дионов – в спироциклические дигидрофураны.

Показано, что азациклизация пентен-1,5-дионов и галогензамещенных аналогов приводит к дихлорпиридинам, дихлорпентан-1,5-дионов к монохлорпиридинам и ароилпирролам соответственно, пропилиденонилтетрагидронафталинонов – к диазепинам;

Выявлена принципиальная возможность получения моно- и бисаминотиазолов с участием -хлоркетонного фрагмента дихлорпентен-, пентандионов.

Разработана стратегия синтеза непредельных 1,5-дикетонов, их конденсированных аналогов с различным расположением ,-енонового фрагмента в дикетонной цепи и относительно алицикла.

Практическая значимость работы заключается:

- в разработке оригинальных способов получения галогензамещенных пентен-, пентандионов и их конденсированных аналогов, хлорзамещенных солей пирилия, тиопирилия, пиридинов, новизна и результативность которых подтверждена 4 авторскими свидетельствами;

- в выявлении биологической активности в рядах хлорзамещенных гетероциклических соединений: антимикробной – среди солей 3-хлортио-пирилия (защищено авторским свидетельством), пестицидной - для ароилхлорфуранов, хлорпиридинов, бисаминотиазолов, обобщенные в базе данных биологически активных веществ, синтезированных на химическом факультете Саратовского госуниверситета, предназначенной для широкого круга специалистов.

Ценность методологических решений задач настоящего исследования заключается в возможности их распространения на структурно-родственные системы.

Высокую степень обоснованности научных результатов, положений и выводов обеспечивает совокупность современных физико-химических методов исследования, используемых автором, в том числе, ИК, ЯМР 1Н и 13С спектроскопия, масс-спектрометрия, их корректность и соответствие общетеоретическим представлениям.

На защиту выносятся следующие положения:

- новое перспективное научное направление в химии галогензамещенных пентен-, пентандионов и их конденсированных аналогов, основой которого являются разработанные методы синтеза галогенирования пентен-, пентан-дионов, конденсированных аналогов, их гетероциклизации в 5,6,7-и членные N,O,S-содержащие гетероциклические соединения;

- результаты экспериментального обоснования общности и специфики превращений галогензамещенных 2-пентен-, пентан-1,5-дионов, пропилиденонилциклогексанонов, -тетрагидронафталинонов в электрофильных и нуклеофильных реакциях в ароил(хлор)фураны, пирролы, моно(ди)хлорпиридины, соли монохлортиопирилия и дихлорпирилия, аминотиазолы, диазолины;

- сравнительная химия в рядах ,-непредельных 1,5-дикетонов и их хлорзамещенных аналогов;

- особенности стереостроения непредельных 1,5-дикетонов ациклического и полуциклического рядов, галогензамещенных аналогов;

- результаты выявленной высокой антимикробной и пестицидной активности в рядах (хлор)замещенных гетероциклических соединений.

- выявленная высокая биологическая активность: антимикробная (защищено авторским свидетельством), пестицидная в рядах хлорзамещенных гетероциклических соединений.

Апробация работы. Основные результаты работы докладывались на IX симпозиуме по химии гетероциклических соединений ( Братислава, ЧССР, 1987), V конференции Федерации европейских химических обществ по Гетероциклам в биоорганической химии (Прага, 1988), конференции по химии и технологии пиридинсодержащих пестицидов (Черноголовка, 1989), Межреспубликанской конференции по синтезу, фармакологии и клиническим аспектам новых психотропных и сердечно-сосудистых веществ (Волгоград, 1989), Всесоюзных и межрегиональных совещаниях по химическим реактивам (Ашхабад, 1989; Алма-ата, 1991; Дилижан, 1991), Всесоюзном совещании по кислородсодержащим гетероциклам (Краснодар, 1990), Всесоюзной конференции «Химия гетероциклических соединений» (Рига, 1991), I Всесоюзной конференции по теоретической органической химии (Волгоград, 1991), V Всесоюзной конференции по химии азотсодержащих гетероциклических соединений (Черноголовка, 1991), Всесоюзных, Всероссийских и международных конференциях «Карбонильные соединения в синтезе гетероциклов» (Саратов, 1989, 1996, 2004, 2008), Международной конференции, посвященной Н.И.Вавилову (Саратов, 1997), Международной конференции по химии S,Se,.Р-содержащих соединений (С.Петербург, 1998), Всероссийской практической конференции по технологии органических соединений (Ярославль, 1998), конференции «Химия для медицины и ветеринарии» (Саратов, 1998), ХУI и XVIII Менделеевских съездах по общей и прикладной химии (С.-Петербург, 1998; Москва, 2007), XX Всероссийской конференции по химии и технологии органических соединений серы (Казань, 1999), V Всероссийской конференции молодых ученых «Современные проблемы теоретической и экспери-ментальной химии» (Саратов, 2005), Международной конференции «Орга-ническая химия от Бутлерова и Бельштейна до современности» (С.-Петер-бург, 2006), конференции «Фундаментальные и прикладные проблемы совре-менной химии в исследованиях молодых ученых» (Астрахань, 2006), IX научной школы-конференции по органической химии (Москва, 2006), XIX Международной научно-технической конференции «Химические реактивы, реагенты и процессы малотоннажной химии. «Реактив-2006» (Уфа, 2006), XVII Российской Молодежной научной конференции «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2007, 2008), III школе-семинаре «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул» (Иваново, 2007), XI Международной научно-технической конференции «Перспективы развития химии и практического применения алициклических соединений» (Волгоград, 2008), конференции «Пути и формы совершенствования фармацевтического образования. Создание новых физиологически активных веществ» (Воронеж, 2007).

Публикации. По теме диссертации опубликовано 64 работы: 32 статьи, из них 14 (включая 5 обзоров) в научных журналах, входящих в перечень ведущих рецензируемых научных журналов и изданий, рекомендованных ВАК, 1 учебное пособие, 2 главы в монографии, 24 тезисов докладов, получено 5 авторских свидетельств на изобретения.

Личный вклад автора в работы, выполненные в соавторстве и включенные в диссертацию, выразился в выборе и постановке проблемы, ее теоретическом обосновании и разработке, участии во всех этапах исследования и интерпретации полученных результатов.

Объем и структура работы. Диссертация изложена на 280 страницах машинописного текста, включая введение, 5 глав, выводы, список цитируе-мой литературы из 260 наименований, 20 таблиц и 15 рисунков.





ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1,5-Дикетоны, в том числе ,-непредельные, привлекают исследователей высокой реакционной способностью и возможностью использования их для получения ценных в практическом отношении N,O,S-содержащих гетероциклических соединений, нашедших применение в качестве лекарственных препаратов, модельных веществ при изучении состава сернистых нефтей, светочувствительных материалов и др.

Анализ литературных данных свидетельствует, что к настоящему времени осуществлен синтез значительного ряда ациклических непредельных 1,5-дикетонов. Сведения, касающиеся получения полуциклических диоксосоединений имеются лишь в ограниченном числе публикаций, галогензамещенные аналоги не представлены в печати. Это весьма неоправданно, поскольку введение галогена в молекулу открывает новые препаративные возможности для синтеза функционализированных алифатических, алифатическо-циклических карбонильных, карбо- и гетероциклических соединений.

Представлялось важным восполнить имеющиеся пробелы как в синтезе моно-, полигалогензамещенных пентендионов, в сравнительном плане пентандионов и конденсированных систем, установить направленность галогенирования, его стереохимические особенности в зависимости от характера реагента, структуры субстратов, так и возможность гетероциклизации в условиях электрофильных и нуклеофильных превращений.

Ключевыми субстратами явились непредельные 1,5-дикетоны нескольких типов: ациклические жирноароматические три- и тетразамещенные 1,5-дикетоны 1-4, а также конденсированные аналоги циклогексанонового 5,6 и тетрагидронафталинонового 7 рядов, отличающиеся числом, природой заместителей, положением кратной связи и характером оксогрупп, сопряженных с кратной связью, арильным заместителем либо свободных от сопряжения, а также их насыщенные аналоги 8-13.

Это должно было привести, с одной стороны, к установлению особенностей и закономерностей их химического поведения в нуклеофиль-ных и электрофильных реакциях, с другой стороны, определить препаратив-ные возможности и область применения 1,5-дикетонов и продуктов их превращений.

1. ,-НЕПРЕДЕЛЬНЫЕ 1,5-ДИКЕТОНЫ АЦИКЛИЧЕСКОГО

И ПОЛУЦИКЛИЧЕСКОГО РЯДОВ

К началу настоящих исследований было реализовано четыре подхода к синтезу непредельных 1,5-дикетонов: основной гидролиз солей пирилия, кетовинилирование карбонильных соединений, метиленирование насыщен-ных 1,5-дикетонов, ацилирование ,-непредельных кетонов. Проведенные нами исследования показали, что наиболее удобными для получения 2-пентен-1,5-дионов 1-4, пропилиденонилциклогексанонов 5 и их бензаннели-рованных аналогов 7 являются условия основного гидролиза солей пирилия и конденсированных аналогов. Для синтеза пропенонилциклогексанонов 6 на-ми использовался метод кетовинилирования. Однако эти методы имели ограничения по выходам целевых продуктов, отличались плохой воспроизводимостью; это было устранено после разработанных нами оптимальных условий основного гидролиза солей пирилия, тетрагидро- и бензодигидрохроменилия и кетовинилирования с использованием арил--хлорвинилкетонов.

1.1. Основной гидролиз солей пирилия, тетрагидро- и

бензодигидрохроменилия

Изучены превращения солей пирилия 14-16, тетрагидро- 17 и бензо-дигидрохроменилия 18 в условиях основного гидролиза. При гидролизе с использованием водно-спиртового раствора (пропан-2-ол) гидроксида натрия солей пирилия 14а-ж,15,16 и бензодигидрохроменилия 18а-в впервые получены три-, тетразамещенные (симметричные, несимметричные) 2-пен-тен-1,5-дионы 1б,д,е,ж, 4а, пропилиденонилтетрагидронафталиноны 7а-в.

Отличительной особенностью в поведении солей тетраги-рохроменилия 17а-в при щелочном гидролизе является образование непредельных семициклических дикетонов – 2-(3-оксо-1-R3-2-R5-пропилиден)циклогексанонов 5а-в и ранее неизвестных 2,4-диарилбицикло-[3.3.1]нон-3-ен-2-ол-9-онов 19а-в, являющихся новыми в условиях основного катализа.

Таким образом, при гидролизе солей тетрагидрохроменилия 17а-в наблюдаются два параллельных процесса. Можно полагать, что превращения борфторатов тетрагидрохроменилия 17а-в в присутствии щелочи начинаются с образования изомерных хроменолов, из которых только -изомеры 22 и 23 претерпевают дециклизацию с возникновением диенолонов, преобразующихся в бицикло-[3.3.1]-нон-3-ен-2-ол-9-оны 19а-в и менее реакционноспособный для карбоциклизации ендион 5.

Методом теории функционала плотности DFT на уровне теории B3LYP/6-311G+(d,p) проведено квантовохимическое исследование электронного строения катиона 2,4-дифенилтетрагидрохроменилия 17а (рис.1). Согласно расчетам в реакции катиона тетрагидрохроменилия с гидроксид-ионом, являющейся зарядово-контролируемой, следует ожидать

нуклеофильной атаки именно - и '-реакционных центров гетероцикла, и, следовательно, реализации цепи дальнейших химических превращений по двум направлениям I и III, что согласуется с данными эксперимента. Выходы конечных продуктов 19 и 5, образующихся по реакционным каналам I и III, составляют 36 и 46% соответственно при 25C, 55 и 31% при 75C. Реализация обозначенных направлений на дальнейших стадиях может определяться термодинамикой интермедиатов 22а,б и 23а,б (в соединениях 22 и 23 появляется хиральный центр - атом углерода, связанный с гидроксильной группой).

Различие в термодинамической устойчивости интермедиатов 22 и 23 служит по крайней мере одной из причин наблюдаемой температурно-обусловленной инверсии выходов конечных продуктов 19 и 5. При температуре 20С преобладание продукта 5 объясняется более низким энергетическим барьером первой стадии (формирования OH-аддукта) многостадийного процесса. По мере увеличения температуры реакции повышается вероятность преодоления барьера, требующегося для перехода от интермедиата 23 к более высокоэнергетическому интермедиату 22. Другой причиной снижения выхода дикетона 5 по сравнению с гидроксикетоном 19 по мере возрастания температуры может служить увеличение скорости колебательно-вращательно-инверсионного движения приконденсированного алицикла, которое создает стерические препятствия нуклеофильной атаке гетероциклического катиона гидроксид-ионом.

Таблица 1.1

Значения сумм электронной и термической энтальпии (H) и свободной энергии (G)

в атомных единицах (а.е., хартри на частицу)*

Молекула H G
22а –962.399464 –962.467824
22б –962.400937 –962.468860
23а –962.407984 –962.472981
23б –962.401155 –962.468985


Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.