авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 |

Синтез третичных пара- и мета-гидропероксидов изопропилтолуола и их химические превращения

-- [ Страница 1 ] --


На правах рукописи





РУМЯНЦЕВА Юлия Борисовна








СИНТЕЗ ТРЕТИЧНЫХ ПАРА- И МЕТА-ГИДРОПЕРОКСИДОВ ИЗОПРОПИЛТОЛУОЛА И ИХ ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ






02.00.03 – Органическая химия





АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата химических наук








Ярославль - 2013

Работа выполнена на кафедре «Общая и физическая химия» Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Ярославский государственный технический университет»

Научный руководитель: доктор химических наук, профессор

Кошель Георгий Николаевич

Официальные оппоненты: доктор химических наук, профессор

Шапошников Геннадий Павлович

ФГБОУ ВПО «Ивановский государственный

химико-технологический университет»,

доктор химических наук, профессор

Блохин Юрий Иванович

ФГБОУ ВПО «Московский государственный

университет технологий и управления

им. К.Г. Разумовского»

Ведущая организация: ФГБОУ ВПО «Волгоградский

государственный технический университет»

Защита диссертации состоится « 17 » октября 2013 г. в 14.00 часов на заседании диссертационного совета Д 212.308.01 при ФГБОУ ВПО «Ярославский государственный технический университет» по адресу: 150023, г. Ярославль, Московский проспект, 88, аудитория Г-219.

С диссертацией и авторефератом можно ознакомиться в научной библиотеке при ФГБОУ ВПО «Ярославский государственный технический университет» по адресу: 150023, г. Ярославль, Московский проспект, 88.

Автореферат разослан «___»___________2013 г.

Ученый секретарь диссертационного совета,

доктор химических наук А.А. Ильин

Актуальность темы исследования. В настоящее время в органической химии сложились два направления синтеза органических соединений. Первое - синтез новых соединений. Второе - усовершенствование уже известных и описанных ранее в литературе методов получения органических веществ, направленных на использование новых более перспективных исходных веществ, повышение селективности образования конечных продуктов и обеспечения экологической безопасности. Очевиден и понятен интерес, который проявляется в органической химии к реакциям жидкофазного окисления алкилароматических углеводородов до гидропероксидов (ГП) и их последующего превращения. Как известно эти реакции составляют химическую основу получения крупнотоннажных продуктов органического синтеза, таких как фенол и ацетон, оксид пропилена и стирол.



Расширить это важное направление получения крупнотоннажных продуктов органического синтеза можно за счет других алкилароматических углеводородов и их ГП. В этой связи научный и практический интерес представляет использование изопропилтолуола (ИПТ, цимола) - (ближайшего аналога изопропилбензола (ИПБ)) в синтезе метилфенолов (крезолов) – ценных продуктов органического синтеза. К сожалению, этот путь использования ИПТ и его ГП до сих пор в органическом синтезе не реализован. Связано это, прежде всего с тем, что при алкилировании толуола пропиленом (изопропиловым спиртом) образуется не индивидуальный п-ИПТ, а смесь изомеров ИПТ, имеющих близкую температуру кипения и плавления, что не позволяет выделить индивидуальные изомеры методом ректификации и кристаллизации. Жидкофазное окисление изопропильных производных толуола протекает с меньшей, чем у ИПБ скоростью. При этом одновременно образуются первичный и третичный ГП ИПТ. Селективность образования третичного ГП (трет-ГП ИПТ), как правило, не превышает 60-65 %. До последнего времени эти трудности не были преодолены, что существенно сдерживает практическую реализацию окислительного метода получения ряда ценных продуктов органического синтеза на основе ИПТ и его ГП.

Исследования, проведенные в рамках настоящей диссертационной работы, выполнены в соответствии с тематическим плавном ЯГТУ, проводимых по заданию Федерального агентства по образованию РФ по теме: «Разработка методов синтеза ароматических, карбо- и гетероциклических полифункциональных органических соединений для получения композиционных материалов с использованием нанотехнологий на 2008-2012 гг. (№ 0120.0 852836) и в рамках программы У.М.Н.И.К. Фонда содействия развитию малых форм предприятий в научно-технической сфере, работа поддерживалась внутренним грантом ЯГТУ 2011-1012 года.

Цель работы - разработать рациональные пути и изучить закономерности получения:

- ИПТ алкилированием толуола изопропиловым спиртом;

- трет-ГП ИПТ жидкофазным селективным окислением п-ИПТ и его изомеров в присутствии фталимидных катализаторов;

- п-крезола и смеси м- и п-крезолов, ацетона и диметил-п-толилкарбинола направленным превращением трет-ГП ИПТ;

- 2-гидрокси-5-бифенилкарбоновой кислоты на основе п-крезола и циклогексанола.

Для достижения этих целей решались следующие задачи:

- Проанализировать известные в литературе способы получения ИПТ и их химические превращения;

- Синтезировать м- и п-ИПТ переалкилированием смеси изомеров ИПТ, получаемой взаимодействием толуола с изопропиловым спиртом;

- Изучить влияние температуры, природы и концентрации инициатора, времени реакции на селективность образования ГП в процессе жидкофазного окисления п-ИПТ. Обосновать схему окислительных превращений п-ИПТ;

- Исследовать закономерности реакции жидкофазного окисления п-ИПТ и смеси м-, п-изомеров ИПТ до трет-ГП ИПТ в присутствии N-гидроксифталимида (N-ГФИ, NHPI). Составить кинетическую модель и показать роль N-ГФИ в механизме реакции жидкофазного окисления ИПТ;

- Синтезировать п-крезол и смесь м- и п-крезолов, а также диметил-п-толилкарбинол направленным разложением трет-ГП ИПТ;

- Синтезировать 2-гидрокси-5-бифенилкарбоновую кислоту на основе алкилирования п-крезола циклогексанолом.

Научная новизна. Впервые установлено, что жидкофазное окисление п-ИПТ и смеси м- и п- изомеров ИПТ в присутствии N-ГФИ сопровождается образованием трет-ГП ИПТ с селективностью 90-95 %, вплоть до конверсии углеводорода 20-25 %. При этом метильная группа в ИПТ в данных условиях не окисляется, а использование N-ГФИ в процессе жидкофазного окисления ИПТ до ГП приводит к одновременному повышению скорости окисления и селективному образованию ГП. Доказано, что N-ГФИ может выступать в роли инициатора и катализатора. Изучены закономерности процесса и составлена кинетическая модель, адекватно описывающая экспериментальные данные. Объяснена роль N-ГФИ в различных стадиях радикально-цепного окисления ИПТ.

Практическая значимость работы. Показано, что алкилирование толуола ИПС в присутствии серной кислоты может служить экономически обоснованным и быстро реализуемым методом получения смеси изомеров цимолов.

Установлено, что в присутствии N-ГФИ скорость окисления п-ИПТ в 8–10 раз превосходит аналогичные показатели, достигнутые ранее в отсутствии этого катализатора. Селективность образования трет-ГП ИПТ составляет 90-95 % при конверсии углеводорода 25-30 %. Экстракцией водным раствором метанола (с эффективностью 98 %) из продуктов окисления п-ИПТ и смеси изомеров ИПТ был выделен трет-ГП ИПТ и подвергнут кислотному разложению с образованием п- и м-крезолов и ацетона с выходом 98 % при полной конверсии ГП. Найдено, что использование концентрированного трет-ГП ИПТ повышает выход целевых продуктов превращения ГП на 10-15 %.

Апробация работы. Основные результаты работы доложены на 64, 65 и 66 научно-технических конференциях студентов, магистрантов и аспирантов высших учебных заведений с международным участием г. Ярославль в 2011, 2012 и 2013 гг.; IV Молодежной научно-технической конференции «Наукоемкие химические технологии-2011», г. Москва в 2011 г.; X школе-конференции молодых ученых по нефтехимии, к 100-летию со дня рождения проф. К.В. Топчиевой, г. Звенигород, в 2011 г.; XIV Международной научно-технической конференции «Наукоемкие химические технологии-2012» с элементами научной школы для молодежи, Тула, 21-25 мая 2012; Региональной научной конференции «Фундаментальные науки специалисту нового века» г. Иваново в 2012 г.

Публикации. По материалам диссертации опубликовано 18 работ, в том числе 13 статей в журналах рекомендуемых ВАК, получен патент РФ.


Структура и объем диссертации. Диссертация состоит из введения, 6 глав, в работе представлены основные результаты и выводы, список литературных источников, содержит 32 таблицы, 27 рисунков, приложение с экспертным заключением о перспективах использования полученной 2-гидрокси-5-бифенилкарбоновой кислоты. Общий объем работы 130 страниц машинного текста.

Личный вклад автора. Диссертантом выполнен весь объем экспериментальных исследований, проведены необходимые расчеты, обработка результатов и их анализ, сформулированы общие положения, выносимые на защиту, выводы и рекомендации.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1 Литературный обзор

В ходе анализа литературных данных установлено, что среди синтетических методов получения ИПТ определенный научный и практический интерес представляет метод получения ИПТ алкилированием толуола ИПС, закономерности которого изучены недостаточно. Показано, что наиболее рациональным методом получения трет-ГП ИПТ является жидкофазное окисление ИПТ. Проанализированные литературные данные по проведению жидкофазного окисления п-ИПТ в присутствии инициирующих и каталитических добавок, способам выделения ГП из продуктов окисления п-ИПТ. Установлено, что наиболее целесообразным является концентрирование ГП с помощью экстракции.

2 Экспериментальная часть

В экспериментальной части дана характеристика использованных в работе веществ, приведены методики проведения экспериментов (методика получения N-ГФИ, жидкофазного окисления ИПТ кислородом воздуха при атмосферном давлении, концентрирования ГП, кислотного разложения ГП ИПТ до крезола и ацетона, получения диметил-п-толилкарбинола, 4-метил-2-циклогексилфенола, 5-метил-2-бифенилола, 2-гидрокси-5-бифенилкарбоновой кислоты). Представлены методики проведения анализов (газо-жидкостная хроматография, ИК-спектроскопия, хромато-масс спектрометрия, определения содержания ГП, определение органических кислот, ЯМР 1Н спектроскопия, потенциометрическое определение ароматических гидроксикарбоновых кислот).

  1. Синтез цимолов алкилированием толуола изопропиловым спиртом

При алкилировании толуола ИПС при 10-20 оС выход цимолов составляет 90-95 % на прореагировавший ИПС. Содержание м-, п- и о-ИПТ не зависит от условий проведения процесса и составляет 40-41, 30-32, 30-27 % масс. соответственно. Строение синтезированной смеси изомеров ИПТ было подтверждено совокупностью данных масс-спектрометрии и хроматографически.

Взаимодействие толуола с ИПС, катализируемое H2SO4, относится к типичным реакциям электрофильного замещения ароматических углеводородов, протекающих по карбоний-ионному механизму.

Наиболее приемлемым для практического использования представляет смесь м- и п-ИПТ. Температуры кипения о-, м-, п-ИПТ различаются незначительно и выделить о-ИПТ ректификацией из смеси изомеров ИПТ не представляется возможным. В то же время, очевидна возможность изомеризации о-ИПТ в термодинамически более стабильный м-ИПТ, что было подтверждено полученными результатами по химическому равновесию в системе толуол + изопропилтолуолы. При взаимодействии смеси цимолов с толуолом, при 25 оС и 5-10 % масс. хлористого алюминия образуется смесь цимолов, которая содержит примерно 70-65, 29-33 и 1-2 % масс. м-, п- и о-ИПТ соответственно.





4 Изучение закономерностей жидкофазного окисления ИПТ до трет-гидропероксидов


4.1 Инициированное жидкофазное окисление ИПТ

Для выбора условий получения ГП п-ИПТ первоначально были изучены закономерности окисления п-ИПТ в интервале температур 110-150 С, в присутствии гидропероксида изопропилбензола (ГП ИПБ) в качестве инициатора, в количестве 0,5-2,5 % масc. от загрузки п-ИПТ.

Из данных, представленных в таблице 1, видно, что при увеличении температуры от 110 до 150 С скорость окисления углеводорода возрастает примерно в 1,5-2 раза. В этих условиях за 2 часа удается накопить до 14 % ГП п-ИПТ. В качестве побочных продуктов были обнаружены куминовая кислота, куминовый спирт и метилацетофенон. Селективность образования ГП п-ИПТ при этом не превышает 82-84 %.

Было изучено влияние содержания куминовой кислоты в реакционной массе на накопление ГП ИПТ, установлено, что увеличение ее количества от 0 до 3 % масс. приводит к уменьшению количества образующегося ГП ИПТ, вследствие распада трет-ГП до кетона и спирта.

Основываясь на многочисленных исследованиях механизма реакции жидкофазного окисления алкилароматических углеводородов и полученных нами экспериментальных данных схема окислительных превращений ИПТ может быть представлена следующим образом (рисунок 1):

  Схема окислительных-2

Рисунок 1 – Схема окислительных превращений изопропилтолуолов.

Начальным актом окисления ИПТ (I) является образование гидропероксидов двух типов: третичного (II) и первичного (IV). Выделенный трет-ГП ИПТ представляет собой слабоокрашенную жидкость с острым запахом, Т.кип. 88-91 оС при 5 мм рт. ст., структура соединения подтверждена ЯМР 1Н спектроскопией. На более глубоких стадиях окисления трет-ГП ИПТ (II) может распадаться на диметилтолилкарбинол (III), содержание которого в продуктах окисления составляет примерно 10-15 %. При распаде первичного ГП ИПТ (IV) образуется куминовый альдегид (V), который является источником образования куминовой кислоты (VI). Образующаяся в процессе (VI), как известно, являются ингибитором радикально-цепных реакций окисления.

4.2 Окисление п-ИПТ в присутствии фталимидных катализаторов

Для повышения скорости окисления п-ИПТ и селективности образования трет-ГП были использованы фталимидные катализаторы, которые ранее были успешно применены для интенсификации процессов жидкофазного окисления алкил- и циклогексилароматических углеводородов.

Влияние ряда факторов: температуры, времени реакции и концентрации катализатора на скорость реакции окисления п-ИПТ и селективность образования трет-ГП, было изучено в присутствии N-ГФИ, так как он является наиболее доступным по сравнению с другими аналогами.

Как видно из таблицы 1 и рисунка 2 (а), применение N-ГФИ позволяет снизить температуру проведения реакции со 120-150 С до 80-90 С. При этом скорость накопления трет-ГП п-ИПТ возрастает примерно в 2 раза по сравнению с использованием в качестве инициатора ГП ИПБ, а селективность с 84 до 94 %. Из этой же таблицы можно сделать вывод о том, что скорость окисления зависит от концентрации N-ГФИ.

 а б  Зависимость накопления ГП-3

а б

Рисунок 2 – Зависимость накопления ГП от времени при разных температурах: 1- 80 °С, 2 – 90 °С, 3 – 100 °С, 4 – 110 °С, 5 – 120 °С (а) содержание катализатора 2,44 % масс. от загрузки углеводорода и окисление п-ИПТ в отсутствии инициатора, катализатора (1) и с N-ГФИ (2) при 120 оС (б).

Инициирующая роль N-ГФИ наглядно иллюстрируется рисунком 2 (б).

Таблица 1 – Влияние концентрации ГП ИПБ (время реакции 120 мин.), N-ГФИ (время реакции 90 мин.) и температуры на селективность образования трет-ГП ИПТ и конверсию п-ИПТ в процессе его жидкофазного окисления.



Pages:   || 2 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.