авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Эффект электроиндуцированного селективного дрейфа катионных аквакомплексов в водных растворах солей щелочно– и редкоземельных металлов

-- [ Страница 1 ] --

На правах рукописи

Ломов Иван Викторович

ЭФФЕКТ ЭЛЕКТРОИНДУЦИРОВАННОГО СЕЛЕКТИВНОГО ДРЕЙФА КАТИОННЫХ АКВАКОМПЛЕКСОВ В ВОДНЫХ РАСТВОРАХ СОЛЕЙ ЩЕЛОЧНО И РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Специальности:

05.17.02 – Технология редких, рассеянных и радиоактивных элементов

02.00.04 – Физическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата химических наук

СЕВЕРСК-2006

Работа выполнена в Томском политехническом университете

Научный руководитель:

д-р физ.-мат. наук, проф. Шаманин Игорь Владимирович

Официальные оппоненты:

д-р хим. наук, проф. Колпакова Нина Александровна

канд. техн. наук Ревенко Юрий Александрович

Ведущая организация: Российский федеральный ядерный центр

Всероссийский научно-исследовательский институт экспериментальной физики (РФЯЦ ВНИИЭФ), г. Саров Нижегородской обл.

Защита состоится “26” октября 2006 г. в 1400 на заседании диссертационного Совета ДМ 201.011.01 при Северской государственной технологической академии по адресу 636036, г. Северск, Томская обл., пр. Коммунистический, 65, ауд. 224.

Т/ф: 8-3822-779529; e-mail: sofronov@ssti.ru

С диссертацией можно ознакомиться в библиотеке Северской государственной технологической академии.

Автореферат разослан “20” сентября 2006 г.

Ученый секретарь диссертационного совета

д-р техн. наук, проф. В.Л. Софронов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время получение особо чистых и моноизотопных неорганических веществ играет определяющую роль в опережающем развитии современной полупроводниковой и атомной техники, квантовой электроники, промышленности оптических материалов и в других отраслях техники. Решение многих приоритетных задач, таких как прямое превращение тепловой энергии в электрическую, создание сверхпроводящих материалов, создание химически, механически и термически устойчивых материалов, широкое использование атомной энергии, напрямую связано с решением проблемы получения особо чистых (ОЧ) и моноизотопных веществ. Многообразие известных методов получения ОЧ веществ не снимает этой проблемы - все они требуют значительных энергозатрат. В связи с этим, актуален поиск новых, энергосберегающих методов их получения и разработка новых технологий на их основе.

Целью настоящей работы является разработка естественно-научных основ технологии избирательного, элементного обогащения водного раствора солей редкоземельных металлов на основе процесса ориентированного переноса катионных аквакомплексов в разбавленных водных растворах солей щелочно- и редкоземельных металлов при воздействии периодического электрического поля в условиях изоляции растворов от формирующих поле электродов.

Для достижения поставленной цели потребовалось решение следующих задач:

  • определение параметров внешнего, периодического электрического поля, воздействие которого на водные растворы солей вызывает селективный ориентированный перенос аквакомплексов, отличающихся инерционными свойствами, а также характеристик процессов, совокупность протекания которых образует технологию избирательного, элементного обогащения водного раствора солей редкоземельных металлов;
  • создание модели процесса и определение закономерностей ориентированного дрейфа катионного аквакомплекса, помещенного в периодическое электрическое поле с отличающимися амплитудами полупериодов;
  • создание экспериментальной базы для возбуждения и наблюдения процесса ориентированного переноса аквакомплексов в водных растворах солей металлов при наложении периодического электрического поля;
  • определение закономерностей формирования сольватной оболочки, позволяющие дать объяснение экспериментальным данным по её размерам;
  • проведение экспериментов, верифицирующих полученные теоретические положения на примере элементов третьей группы Периодической системы.

Научная новизна работы заключается в том, что:



  • обнаружен эффект электроиндуцированного дрейфа катионных аквакомплексов в разбавленных водных растворах солей металлов и установлены его основные особенности;
  • определено сочетание амплитудных и частотных параметров электрического поля, при котором проявляется эффект электроиндуцированного дрейфа катионных аквакомплексов;
  • разработаны модели сольватации катионов и анионов в терминах уравнений электродинамики сплошных сред и движения поляризованного аквакомплекса в асимметричном электрическом поле;
  • разработаны естественно-научные основы технологии элементного обогащения водных растворов солей щелочно- и редкоземельных металлов и прототип технологической установки.

Практическая значимость. Обнаруженный эффект электроиндуцированного селективного дрейфа катионных аквакомплексов в асимметричном электрическом поле может найти применение в энергосберегающих технологиях получения особо чистых веществ, поскольку эффект возбуждается при электрической изоляции электродов от водных растворов солей без образования замкнутой электрической цепи.

Разработанная модель гидратации катионов позволяет корректно определить размеры надмолекулярных образований (аквакомплексов) в разбавленных водных растворах солей при различных температурах и зарядах ионов, что может быть использовано для уточнения их электрофизических и гидродинамических характеристик (свойств).

Результаты, методологические и технологические подходы, полученные и разработанные в ходе диссертационных исследований используются в учебном процессе на физико-техническом факультете Томского политехнического университета при подготовке инженеров по специальностям “Химическая технология редких, рассеянных и радиоактивных элементов” и “Безопасность и нераспространение ядерных материалов”.

На защиту выносятся:

  • модель эффекта ориентированного дрейфа катионного аквакомплекса в периодическом электрическом поле с отличающимися амплитудами полупериодов, основанная на методе “расщепления по физическим процессам” и на корректном определении размера оболочки сольватированного катиона;
  • экспериментальные методы и средства формирования асимметричного периодического электрического поля в объеме водного раствора соли, обеспечивающие возбуждение селективного дрейфа аквакомплексов в гомеотропной геометрии;
  • параметры электрических полей, обеспечивающих возбуждение эффекта электроиндуцированного селективного дрейфа катионных аквакомплексов в водных растворах солей и закономерности процесса селективного дрейфа для случая катионов металлов II – ой и III – ей групп Периодической системы.

Апробация работы. Результаты диссертационной работы докладывались на 8 Международных, Всероссийских и Отраслевых научно-технических и научно-практических конференциях. В том числе: на Отраслевой научно-технической конференции: “Технология и автоматизация атомной энергетики” (СГТИ, Северск, 2003), на IX Всероссийской (Международной) научной конференции “Физико-химические процессы при селекции атомов и молекул” (Звенигород, 2004), на Международной научно-практической конференции “Физико-технические проблемы атомной энергетики и промышленности (производство, наука, образование)” (Томск, 2004), на Всероссийской научной конференции студентов-физиков и молодых ученых “ВНКСФ-11” (Екатеринбург, 2005), на научной сессии МИФИ-2005 (Москва, 2005), на XI Международной научно-практической конференции студентов и молодых ученых “Современные техника и технологии СТТ’2005 ” (Томск, 2005), на Международной научно-практической конференции “Физико-технические проблемы атомной энергетики и промышленности (производство, наука, образование)” (Томск, 2005), на X Всероссийской (Международной) научной конференции “Физико-химические процессы при селекции атомов и молекул” (Звенигород, 2005).

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и списка используемой литературы. Материал работы изложен на 124 страницах, включая 39 рисунков и 11 таблиц. Библиографический список включает 67 наименований.

Личный вклад автора в работы, выполненные в соавторстве и включенные в диссертацию, состоит в непосредственном участии в разработке модели, построении экспериментальной установки, проведении экспериментов и расчетов, анализе полученных результатов, а также в написании статей, докладов и тезисов докладов.

Публикации. Основное содержание диссертационной работы отражено в 15 печатных работах, в том числе в 5 научных статьях, 3 докладах и 7 тезисах докладов.

СОДЕРЖАНИЕ РАБОТЫ

В первой главе рассмотрены основные свойства РЗЭ и их востребованность, важнейшие области применения, а также минералы, руды и месторождения. Проведен анализ преимуществ и недостатков электрохимических и электрофизических методов в разделении изотопов и элементном обогащении, таких как электродиализ, метод ионных подвижностей и ВЧ разряд. Представлен нетрадиционный подход к решению проблемы переработки торийсодержащих ядерных сырьевых материалов.

Экстракционная очистка соединений тория имеет большие преимущества перед методами, основанными на различии гидролитических свойств или разной растворимости. При экстракционной очистке тория образуется водный рафинат, содержащий нитраты РЗЭ. Он представляет собой ценное сырье для извлечения требуемых элементов.

К отрицательным явлениям, наблюдающимся в процессе электродиализа, следует отнести постепенное разрушение анодных мембран вследствие выделения на аноде малых количеств (следы) хлора, брома и кислорода.

Метод ионных подвижностей – частный случай электрофореза, под которым понимают перемещение диспергированных электрически заряженных частиц в жидкой среде, находящейся в электрическом поле.

Электрофоретическая очистка в основном применяется для удаления из неэлектролитов коллоидных частиц гидроокисей железа, алюминия; сульфидов мышьяка, меди, свинца и других металлов; масляных эмульсий (например, остатка органического растворителя после экстракции примесей) и тонких механических взвесей.

Что касается применения ВЧ разряда на практике, то представляется возможным создание каскада таких установок для получения некоторых изотопов кадмия и цинка. Но при достигнутом уровне разделительного эффекта это производство не будет рентабельным, поскольку одни лишь энергетические затраты составляют более 105 кВт·ч/EPP.

Рассмотренные электрофизические и электрохимические методы, применяемые в элементном и изотопном обогащении веществ, такие как, электродиализ, метод ионных подвижностей, а также применение ВЧ электрического поля, основаны на действии электрического тока, поэтому технологии получения ОЧ и моноизотопных веществ на их основе являются энергоемкими. В этой связи разработка энергосберегающих технологий и их естественно-научных основ является обусловленной.

Возможна реализация технологического варианта, в котором ториевый концентрат является попутным материалом при получении концентратов церия, лантана и иттрия. Технология может базироваться на явлении индуцированного селективного дрейфа катионных аквакомплексов в растворах солей под действием асимметричных электрических полей, частота которых не превышает десятков килогерц.

Разработка естественно-научных основ технологии элементного обогащения водных растворов смеси солей под действием асимметричного электрического поля высокой частоты может стать составной частью программы разработки комплекса технологий перспективных видов ядерного топлива на основе тория.

Во второй главе сформулированы модели процессов сольватации точечного заряда (катиона) и дрейфа аквакомплекса. Изложена методика расчета размеров надмолекулярных образований в зависимости от температуры и зарядового числа иона.





Невозбужденный аквакомплекс, сольватная оболочка которого не деформирована, нейтрален. Оболочка выполняет функцию экрана, который препятствует действию постоянной составляющей высокочастотного электрического поля. Деформация сольватной оболочки и, следовательно, образование у аквакомплекса поляризационного заряда, создает условия для действия постоянной составляющей поля и, следовательно, для возбуждения ориентированного дрейфа аквакомплекса.

Предполагается, что частота поля должна коррелировать с собственной частотой системы , где Me – ион металла, m – кратность его заряда, n – координационное число. Энергия аквакомплекса, которая характеризует его состояние как системы, состоит из четырех частей:

- энергии поступательного движения всего аквакомплекса;

- электронной энергии, определяемой квантовым состоянием электронных оболочек катиона и сольватных групп ;

- колебательной энергии, обусловленной осцилляцией катиона и сольватных групп друг относительно друга;

- ротационной энергии, соответствующей вращению всего аквакомплекса или его частей друг относительно друга.

Структуру раствора можно представить в виде ансамбля упорядоченных надмолекулярных образований - кластеров (назовем их структурными единицами). Общее движение кластера можно представить как поступательное перемещение его центра инерции и движение составляющих (фрагментов) относительно этого центра. Последнее при наличии внешнего поля может быть как колебательным, так и вращательным.

Согласно общим положениям квантовой механики, для линейной системы жёстко связанных частиц частота, соответствующая основному ротационному состоянию, определяется соотношением:

, (1)

где - момент инерции этой системы; m1 и m2 – массы частиц; r0 – расстояние между ними; h – постоянная Планка.

Расчетные значения частот возбуждения, полученные в предположении, что r0 равно расстоянию, на котором электрическое поле катиона уже не вызывает структурирования полярных молекул воды приведены в табл. 1.

Проведенные оценки показывают, что при том же значении координационного числа увеличение массы катиона на 55 % приводит к уменьшению частоты возбуждения ротационного движения сольватной оболочки относительно катиона на 40 %.

Таблица 1 – Частотные характеристики ротационного возбуждения связи: катион-сольватная оболочка; , Гц

Ион Радиус иона, (для n = 6) Координа-ционное число Частота связи Me–OH2 Частота связи Me–(OH2)n для первичной гидратации Частота связи Me–(OH2)2n для вторичной гидратации
Li+ 0,68 4 4.896·1010 3.874·1010 1.309·1010
Mg2+ 0,66 6 2.325·1010 1.212·1010 3.883·109
Ca2+ 0,99 6 1.376·1010 5.845·109 2.033·109
Y3+ 1,06 9 1.123·1010 2.928·109 9.813·108
La3+ 1,14 9 8.364·109 1.782·109 6.018·108

Если считать, что возбуждается ротационное движение сольватных групп OH2, которые ассоциированы в надмолекулярные образование – в кластер, то в качестве значения r0 следует принимать не менее десяти диаметров молекулы воды, а массу структурированной в оболочке воды считать равной порядка 100 масс молекул воды. Оценки показывают, что в этих предположениях значение соответствует около 32 МГц и около 21 МГц для аквакомплексов, образованных катионами Y3+ и La3+, соответственно. Количество сольватных групп OH2, структурированных вокруг иона в пределах сольватной оболочки, не оказывает определяющего влияния на значение частоты для случая когда масса гидратной оболочки значительно превышает массу катиона.

Определяющее влияние на значение оказывает размер сольватной оболочки, а точнее – надмолекулярного образования, состоящего из сольватных групп (табл. 2).

Результаты расчетов показывают следующее. Характерная частота вращения сольватных групп относительно катиона для конкретного катиона (нуклида) зависит как от массы сольватной оболочки, так и от размера надмолекулярного образования в целом.

Таблица 2 – Зависимость характерных частот от размера аквакомплекса (масса сольватной оболочки составляет 104 масс молекулы воды)

r0, м Характерные частоты, кГц
Аквакомплекс Y3+ Аквакомплекс Li+
1.93·10-9 3.02·104 3.87·105
1.93·10-8 302 3.87·103
1.93·10-7 3.02 38.7


Pages:   || 2 | 3 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.