авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Совершенствование методов создания ик – лидарных систем на основе нелинейно-оптических кристаллов для исследований атмосферных газов

-- [ Страница 1 ] --

УДК 535.34 На правах рукописи

Айрапетян Валерик Сергеевич

Совершенствование методов создания ИК лидарных систем на основе нелинейно-оптических кристаллов для исследований атмосферных газов

01.04.05 – «Оптика»

Автореферат

диссертации на соискание ученой степени доктора
технических наук

Новосибирск – 2009

Работа выполнена в Сибирской государственной геодезической академии.

Научный консультант доктор технических наук, профессор Чесноков Владимир Владимирович.
Официальные оппоненты: доктор физико-математических наук, профессор Пономарёв Юрий Николаевич;
доктор физико-математических наук, профессор Дмитриев Александр Капитонович;
доктор физико-математических наук, профессор Строганов Владимир Иванович.
Ведущая организация – Институт автоматики и электрометрии СО РАН, г. Новосибирск.

Защита состоится « 08 » апреля 2010 г. в 14-00 час. на заседании диссертационного совета ДМ 212.251.01 в Сибирской государственной геодезической академии (СГГА) по адресу: 630108, Новосибирск, ул. Плахотного, д. 10, ГОУ ВПО «СГГА», ауд. 403.

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «СГГА».

Автореферат разослан «____» ___________ 2009 г.

Ученый секретарь

диссертационного совета Симонова Г.В.

к.т.н.

Общая характеристика работы

Актуальность темы исследования. Изучение явлений, происходящих в атмосфере Земли, было и остается актуальной задачей в деятельности человека. Традиционные методы дистанционного исследования атмосферных явлений, во многих случаях проводимые визуально-экспериментальным путем, давали малоэффективные результаты. Наряду с традиционными методами, в последние годы активно развиваются современные методы и технические средства по сбору информации о процессах, происходящих в атмосфере Земли. Среди них важное место отводится дистанционному зондированию атмосферы оптическими методами, являющимися наиболее перспективными в исследовании и контроле параметров атмосферы Земли.

Интенсивные исследования в области лазерного дистанционного зондирования, проводимые в последние десятилетия, показали, что лидар (lidar – light identification, detection and ranging) является одним из наиболее перспективных инструментов исследования атмосферных газов и загрязнителей атмосферы.

Информация, полученная с помощью первых лидарных систем на основе лазеров, была очень ограничена, поскольку она не позволяла идентифицировать и определять параметры основных компонентов атмосферы.

Дистанционное зондирование с помощью лидарных систем особенно интенсивно начало развиваться после появления импульсных перестраиваемых лазеров, излучающих в ближнем и среднем инфракрасном диапазонах длин волн, и позволяющих решать ряд принципиально важных задач оптической спектроскопии, а именно:



- достигать предела чувствительности спектрального анализа атомов и молекул, недоступной даже лучшим масс-спектрометрам (экспериментально реализуются методы детектирования отдельных молекул в одном квантовом состоянии);

- проводить исследование спектров и релаксации из возбужденных состояний атомов и молекул (лазерное излучение позволяет селективно возбудить в любое квантовое состояние значительную часть атомов и молекул и проследить пути релаксации их в основное состояние, а также измерить время релаксации);

- выполнять дистанционный спектральный анализ – исследовать комбинационное и резонансное рассеяние атомов и молекул на значительном удалении от лазера и получать информацию об атомном и молекулярном составе вещества;

- с помощью перестройки частоты лазерного излучения, используя избирательность поглощения света веществом, осуществлять селективное воздействие лазерного излучения на вещество с целью определения его состава и свойств.

Лазерные дистанционные исследования компонентов атмосферы Земли, проводимые отечественными научными центрами, в том числе Физическим институтом им. П.Н. Лебедева РАН (г. Москва), Институтом оптики атмосферы СО РАН (г. Томск), Институтом спектроскопии РАН (г. Троицк), Санкт-Петербургским университетом базируются на основе методов флюоресценции, рэлеевского и комбинационного рассеяния.

Существенный вклад в изучение явлений окружающей среды (в частности, конкретных компонентов атмосферы Земли) теоретическими и экспериментальными спектроскопическими методами внесли отечественные ученые: В.Р. Хохлов, С.А. Ахманов, В.Е. Зуев, И.Л.Фабелинский, Ф.В. Бункин, Г.Г. Матвиенко, Ю.Н. Пономарев, Б.И. Васильев и др.

В данной диссертационной работе рассматриваются решения задач исследования газовых сред, связанных с созданием и применением плавно и (или) дискретно перестраиваемых параметрических ИК-лидарных систем, основанных на методе дифференциального поглощения и рассеяния.

Актуальность диссертационного исследования обусловлена необходимостью решения проблемы совершенствования методов и создания, новых лидарных средств, позволяющих расширить диапазон перестройки длины волны лазерного излучения и повысить чувствительность дистанционного детектирования минимально допустимых концентраций молекул газов ИК-лидарной системой.

Также весьма актуальным представляется исследование параметрических процессов генерации лазерного излучения ближнего и среднего ИК-диапазона и создание на его основе эффективной многочастотной и многофункциональной лидарной системы, позволяющей изучать спектральные свойства молекул газов при нелинейно-оптическом взаимодействии с лазерным излучением.

Цель и задачи исследования

Целью диссертационной работы является выявление и обоснование физических закономерностей и особенностей технологических методов обработки нелинейно-оптических кристаллов и создание на их основе высокоэффективных параметрических генераторов света ближнего и среднего ИК-диапазона, обеспечивающих дистанционное зондирование атмосферных газов.

Для достижения поставленной цели в работе необходимо решить следующие задачи, в которые входит:

1) исследование влияния различных факторов (например, ориентации кристалла, концентрации и вида примеси, температуры окружающей среды, термохимической обработки, -облучения и поляризации излучения лазера) на величину и время хранения наведенной оптической неоднородности (НОН), возникающей в активных элементах параметрического генератора света (ПГС) из нелинейных кристаллов ниобата лития (LiNbO3) и калия титанила фосфата (КТР);

2) исследование спектральных, пространственно-временных, амплитудных и поляризационных характеристик излучения ИК ПГС с плавной и (или) дискретной перестройкой длины волны; выявление особенностей этих параметров; исследование влияния вида резонатора ИК ПГС на пространственно-временные, амплитудные и спектральные характеристики излучения; выявление путей получения квазимонохроматичного излучения и определение его степени во всем диапазоне перестройки длины волны ИК ПГС;

3) разработка и реализация ИК-лидарного комплекса, основанного на ПГС, позволяющего плавно и (или) дискретно (от импульса к импульсу) проводить зондирование атмосферы в ближнем и среднем ИК-диапазоне длин волн;

4) проведение экспериментальных исследований дистанционного измерения малых концентраций газов в условиях открытой атмосферы методом дифференциального поглощения и рассеяния; выполнение сравнительного анализа чувствительности данного метода с другими методами при дистанционном измерении концентраций молекул газов в стандартных условиях;

5) исследование особенностей изменения параметров колебательно-вращательного спектра поглощения газовых сред атмосферы Земли (интенсивность, ширина и форма спектральной линии) с учетом влияния различных факторов со стороны окружающей среды;

6) выявление возможностей использования плавно и (или) дискретно перестраиваемого ИК-лидарного комплекса для дистанционного и оперативного определения концентраций биологически агрессивных газовых сред с высокой точностью и чувствительностью.

Объекты и методы исследования

В качестве основных объектов исследования выбраны:

- нелинейно-оптические кристаллы YAG:Nd3+, LiNbO3, LiTaO3 и KTP;

- ИК - параметрический генератор света;

- различные газовые среды, имеющие колебательно-вращательные спектры поглощения в диапазоне частот перестройки ИК - лидара.

При выполнении работы использованы различные методы исследований, в том числе: фотографические, фотоэлектрические и спектроскопические, а также компьютерное моделирование.

Экспериментальные исследования проводились на созданном автором ИК-лидарном комплексе с применением метода дифференциального поглощения и рассеяния (ДПР).

Научная новизна заключается выявление и обоснование физических закономерностей и особенностей технологических методов обработки нелинейно-оптических кристаллов и создание на их основе высокоэффективных параметрических генераторов света ближнего и среднего ИК-диапазон, при этом впервые:

1) разработан системный подход к решению проблемы возникновения НОН в активном элементе ПГС из нелинейного кристалла LiNbO3; определено влияние весового содержания введенной в кристалл примеси, температуры, термохимической обработки и -облучения кристалла на величину и время релаксаций НОН;

2) разработан и реализован новый класс параметрических генераторов излучения на нелинейных кристаллах LiNbO3 и KTP, позволяющих осуществлять плавное и (или) дискретное преобразование частоты накачки лазера в ближний и средний ИК-диапазон, с рекордным значением эффективности преобразования и при спектральной ширине менее (или равной) 1 см-1;

3) на основе ИК ПГС разработаны физико-технические основы ИК-лидаров с одним лазерным источником, позволяющим осуществлять зондирование компонентов атмосферы Земли методом ДПР;

4) уровень чувствительности устройств ИК лидара позволяет реализовать обнаружение органического газа в атмосфере путем дистанционной регистрации обратно рассеянных лазерных эхо-сигналов от топографической мишени методом ДПР. На примере атмосферного метана теоретически рассчитан и экспериментально зарегистрирован колебательно-вращательный спектр поглощения 3 полосы с расстояния 2,2 км и определена его интегральная концентрация (по горизонтальной атмосферной трассе на высоте 50 м от поверхности Земли) с чувствительностью менее 1,7 ppm.

Оригинальность и новизна результатов подтверждается публикациями в ведущих зарубежных и отечественных физических журналах, определенных ВАК Минобрнауки РФ.

Достоверность результатов диссертационной работы подтверждается использованием современных представлений о параметрическом преобразовании частоты лазерного излучения, а также нелинейного взаимодействия интенсивного лазерного излучения с газовой средой, основанного на общепринятых физических моделях и подтверждается сопоставлением с наблюдаемыми экспериментальными данными и с результатами численных расчетов.

Практическая значимость результатов работы заключается в создании и оптимизации параметров ИК-лидарной системы, позволяющей благодаря плавной и (или) дискретной перестройке частоты ИК-излучения осуществлять зондирование атмосферных газов в ближнем и среднем ИК-диапазоне. Указанная система может быть использована в качестве приборов физического эксперимента для абсолютных измерений частот лазерного излучения с погрешностью менее 3·10-4см-1, а также найти применение в лидарных системах, в том числе, в составе военно-технического комплекса. Кроме того, использование высокой чувствительности ИК-лидара на основе одного импульсного параметрического лазера, работающего по методу ДПР, может существенно снизить их стоимость и применяться для картирования пространственного распределения молекул загрязняющих веществ в атмосфере.





Основные научные положения, выносимые на защиту

1. Утверждается, что оптические искажения в нелинейном кристалле LiNbO3, индуцированным импульсным лазерным излучением, возникают в момент начала действия светового импульса (погрешность измерения 5  10-9 с); отсутствует порог образования искажения при изменении плотности энергии записывающего светового импульса от 0,003 до 0,75 Дж/см2. Изменения внешних влияющих факторов в широком диапазоне (нагрев кристалла в интервале от 400 до 600 К, термохимическая обработка в окислительной и восстановительной средах, варьирование содержания примеси в кристалле от 0,01 до 0,3 вес.%, -облучение кристалла) не приводят к изменению амплитудного значения НОН в кристалле LiNbO3. Вместе с тем динамический диапазон времени релаксации НОН, обусловленной внешними факторами, находится в интервале от 10-7 до 104 с.

2. Показано, что комплексирование кольцевого резонатора и спектрального фильтра на основе эталона Фабри – Перо обеспечивает наивысшую монохроматичность и эффективность преобразования основного излучения YAG:Nd+3- лазера в параметрическое излучение ближнего и среднего ИК-диапазона длин волн. Максимальный коэффициент преобразования ( 27 %) со спектральной шириной 1 см-1 и расходимостью излучения 3,5 мрад достигается при частоте повторения импульсов ПГС от 25 до 30 Гц.

3. Доказано, что электрооптический и угловой способы изменения угла синхронизма активного элемента ПГС из нелинейного кристалла LiNbO3, обеспечивают одновременную реализацию плавной и (или) дискретной перестройки частоты излучения параметрического лазера от импульса к импульсу, что служит основой для создания ИК-лидарного комплекса с одним лазером.

4. Разработан ИК-лидарный комплекс, основанный на одном параметрическом лазере и действующий по методу ДПР, позволяет дистанционно детектировать газовые среды, имеющие колебательно-вращательные полосы поглощения, комбинированные и вращательные частоты в диапазоне перестройки ИК-лидара. Прозрачность атмосферы вблизи длины волны 3,4 мкм позволяет проводить измерения концентрации метана методом ДПР на вращательных линиях P7, P9 и P10. Пороговая концентрация метана по открытой атмосферной трассе с расстояния 2,2 км от лидара зарегистрирована на уровне 1,7 ppm.

Апробация работы. Основные научные положения и результаты диссертационной работы докладывались и обсуждались на следующих конференциях, симпозиумах и конгрессах.

1. III Всесоюзная конференция по выращиванию и росту кристаллов, 21-24 сентября, 1977 г.,  г. Кировакан, Арм. ССР.

2. IV Всесоюзная Вавиловская конференция по нелинейной и когерентной оптике, 25-29 июня, 1985 г., г. Новосибирск.

3. ХV научно-техническая конференция преподавателей СГГА, 15-18 апреля, 1996 г., г. Новосибирск.

4. ХVI научно-техническая конференция преподавателей СГГА, 22-28 апреля, 1997 г., г. Новосибирск.

5. Conference «The Laser Applied and Technology - 2002», г. Москва.

6. ХII Международный симпозиум «Оптика атмосферы и океана. Атмосферная физика», 27-30 июня, 2005 г., г. Томск.

7. VI Международная конференция «Лазерная физика-2005», 11-14 октябрь, 2005 г., Аштарак, Армения.

8. IV Международный научный конгресс «ГЕО-Сибирь-2008», 22–24 апреля, 2008 г.,  г. Новосибирск.

9. V Международный научный конгресс «ГЕО-СИБИРЬ-2009», 20-24 апреля, 2009, г. Новосибирск.

10. Международная научно-техническая конференция «Геодезия, картография и кадастр – ХХI век» 25-27 мая 2009, г. Москва.

Основное содержание диссертации отражено в 31 научной работе (24 – в соавторстве), в том числе 12 работ из перечня ВАК («Письма в ЖТФ», «Оптика атмосферы и океана», «Журнал прикладной спектроскопии», «Приборы и техника эксперимента»). По результатам работы получены 4 авторских свидетельства СССР.

Кроме этого, результаты работы опубликованы в сборниках материалов международных конференций: «Нелинейная и когерентная оптика», «Оптика атмосферы и океана. Атмосферная физика», «The Laser Applied and Technology».

Структура и объем диссертации. Диссертация состоит из введения, четырех разделов, заключения и 3 приложений. Она изложена на 191 страницах машинописного текста, содержит 54 иллюстрации и список использованных источников, содержащий 123 наименования, в том числе 66 – на иностранном языке.

Во введении обоснована актуальность темы диссертации, поставлена цель и сформулированы задачи исследований, определены научная новизна и практическая значимость полученных результатов, выделены основные научные положения, выносимые на защиту.

Первый раздел посвящен вопросам взаимодействия лазерного излучения с компонентами атмосферы. В разделе приведено краткое описание структуры и состава атмосферы, ее оптических свойств, уточнена группа молекул газов, являющихся потенциальными загрязнителями окружающей среды; выполнен аналитический обзор современного состояния теории молекулярного поглощения и рассеяния лазерного излучения, а также рассмотрены известные механизмы взаимодействия лазерного излучения с молекулами атмосферных газов.

Значительное место уделено основным определениям и понятиям классической спектроскопии: линейное и нелинейное поглощение, дифференциальное сечение рассеяния, дифференциальное сечение обратного рассеяния, объемный коэффициент обратного рассеяния; анализируются различные причины уширения спектральных линий молекул и обосновываются теоретические ограничения спектрального разрешения.

В диссертации эти явления объяснены следующим образом.

Основное уравнение переноса лазерного излучения малой мощности в атмосфере, для которого спектральная ширина близка к центральной частоте 0-перехода между состояниями |n и m| молекулы газа, описывается в рамках классической модели универсального закона Бугера – Ламберта [19]:

, (1)

где интенсивность света на поверхности z = 0.

В случае коллимированного пучка лазерного излучения, распространяющегося в атмосфере, полный коэффициент ослабления лазерного излучения k() определяется следующим выражением [21]:

. (2)

Суммирование проводится по всем составляющим атмосферы, а через kE(), kR(), kA() и kM() обозначены объемные коэффициенты ослабления за счет упругого (рэлеевского) рассеяния, неупругого (комбинационного) рассеяния, поглощения и рассеяния Ми, соответственно. Из-за малости величины kR() далее в работе не рассматривается эффект комбинационного рассеяния.

Интенсивность света экспоненциально уменьшается по мере увеличения дистанции, проходимой светом в среде. Отклонения от этого закона начинают проявляться лишь для очень мощных лазерных пучков, что связано с нелинейностью отклика атмосферы на сильное световое поле и квантовыми эффектами.

При использовании метода дифференциального поглощения необходимо иметь точные данные о сечении поглощения в зависимости от длины волны лазерного излучения [20].



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.