авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Исследование атомных механизмов структурных превращений вблизи границ зерен кручения в гцк металлах

-- [ Страница 1 ] --

На правах рукописи

Мартынов Алексей Николаевич

ИССЛЕДОВАНИЕ АТОМНЫХ МЕХАНИЗМОВ СТРУКТУРНЫХ

ПРЕВРАЩЕНИЙ ВБЛИЗИ ГРАНИЦ ЗЕРЕН КРУЧЕНИЯ

В ГЦК МЕТАЛЛАХ

Автореферат

диссертации на соискание ученой степени

кандидата физико-математических наук

Специальность 01.04.07 – физика конденсированного состояния

Барнаул – 2011

Работа выполнена в ФГБОУ ВПО

«Алтайский государственный технический университет им. И.И. Ползунова»,

ФГБОУ ВПО «Сибирский государственный индустриальный университет»

Научный руководитель: доктор физико-математических наук, доцент Полетаев Г.М.
Официальные оппоненты: доктор физико-математических наук, профессор Демьянов Б.Ф. доктор физико-математических наук, профессор Глезер А.М.
Ведущая организация: Сибирский физико-технический институт им. акад. В.Д. Кузнецова

Защита состоится « 27 » декабря 2011 г. в 1100 часов на заседании диссертационного совета Д 212.004.04 при Алтайском государственном техническом университете по адресу: 656038, г. Барнаул, пр. Ленина, 46.

С диссертацией можно ознакомиться в научной библиотеке Алтайского государственного технического университета им. И.И. Ползунова.

Автореферат разослан « » ноября 2011 г.

Ученый секретарь диссертационного совета, кандидат физико-математических наук Романенко В.В

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Важнейшими структурными дефектами металлических материалов, обуславливающими многие их физико-механические свойства, являются границы зерен. Границы зерен оказывают определяющее влияние на прочность, пластичность, ползучесть, на процессы разрушения, плавления, диффузии, рекристаллизации и прочие. Несмотря на большое число исследований границ зерен, в настоящее время остается ряд вопросов, касающихся как структуры границ, так и структурных изменений вблизи них в процессе температурно-силовых воздействий.

Границы зерен по положению оси разориентации делятся на два типа, представляющих собой крайние случаи: границы наклона и кручения. В случае границ наклона ось разориентации, то есть ось, вокруг которой одно кристаллическое зерно повернуто относительно другого, лежит в плоскости границы. В случае границ кручения – ось разориентации перпендикулярна этой плоскости. Менее изученными, как с точки зрения атомной структуры, так и с точки зрения процессов, происходящих с их участием, являются границы кручения.



Исследование атомной структуры границ кручения в настоящее время находится в начальном состоянии. В частности, для многих типов малоугловых границ кручения не проведена идентификация зернограничных дислокаций, не получены зависимости энергии границ от угла разориентации.

Диффузия по границам зерен, как известно, протекает значительно интенсивнее, чем в объеме зерен. Несмотря на длительную историю исследования диффузии по границам зерен, представление об атомных механизмах зернограничной диффузии до настоящего времени остается неполным.

Диффузионные свойства деформированных металлов и сплавов зависят от величины деформации и скорости деформирования. Механизм влияния деформации на диффузию по различным кристаллографически определенным границам зерен изучен слабо, тем более на атомном уровне. Кроме того, безусловный интерес представляет атомный механизм пластической деформации с участием границ зерен.

Решение указанных вопросов с помощью реальных экспериментов весьма затруднительно, поскольку для этого необходимы исследования структуры и ее динамики на атомном уровне. В данном случае наиболее эффективным является применение метода компьютерного моделирования, который позволяет с достаточной точностью в рамках модели учитывать и контролировать параметры исследуемого явления, изучать в динамике процессы, протекающие на атомном уровне с использованием различных наглядных визуализаторов структуры.

Таким образом, представляется актуальным исследование методом компьютерного моделирования атомной структуры границ зерен и характера протекания вблизи них диффузионных процессов.

Цель работы заключается в изучении с помощью метода молекулярной динамики атомной структуры границ кручения в ГЦК металлах, механизма и особенностей диффузии по данным границам.

Научная новизна диссертационной работы заключается в том, что впервые проведена идентификация винтовых дислокаций в малоугловых границах кручения (100), (110), (111) в ГЦК металлах. Для рассматриваемых границ в Ni, Cu, Al найдены зависимости энергии границ кручения от угла разориентации при использовании двух типов потенциалов межатомного взаимодействия: парного Морза и многочастичного Клери-Розато. Проведено исследование взаимодействия точечных дефектов с границами кручения, рассчитаны энергии связи вакансий и междоузельных атомов с границами. Получены характеристики самодиффузии по рассматриваемым границам, как для структурно «чистых», так и содержащих внесенные точечные дефекты. Оценен вклад внесенных точечных дефектов в самодиффузию по границам кручения. Выяснен атомный механизм диффузии по малоугловым границам кручения. Проведено исследование самодиффузии по границам кручения в условиях одноосной деформации.

Достоверность результатов обеспечивается применением известных и апробированных методик (метод молекулярной динамики, методика определения параметров потенциалов межатомного взаимодействия), и сравнением полученных результатов с результатами экспериментальных и теоретических работ других авторов.

Научная и практическая ценность работы состоит в том, что полученные результаты могут быть использованы для развития теории диффузии и процессов с ней связанных по границам зерен, для создания математических моделей зернограничной диффузии, учитывающих атомную структуру границ и механизм диффузии, обнаруженные в настоящей работе. Полученные с помощью компьютерного моделирования структура границ зерен и варианты ее перестроек могут применяться для анализа электронно-микроскопических изображений высокого разрешения. Кроме того, результаты молекулярно-динамических исследований могут быть использованы в качестве демонстрационного материала для студентов физических специальностей, на их базе возможно создание работ для лабораторного практикума.

На защиту выносятся следующие положения:

1. Диффузия по малоугловым границам кручения осуществляется посредством кооперативного смещения атомов вдоль ядер зернограничных винтовых дислокаций с образованием цепочек смещенных атомов, начинающихся и заканчивающихся в узлах дислокационной сетки.

2. Внесенные точечные дефекты в границах кручения располагаются преимущественно в узлах дислокационной сетки. При этом наибольшей сорбционной способностью по отношению к точечным дефектам из рассмотренных границ обладают границы (110), наименьшей – границы (111).

3. Внесенные вакансии играют важную роль в диффузии по границам зерен кручения. Вклад в диффузию, обусловленный миграцией внесенных вакансий, существенно выше других вкладов (миграции атомов по структурно «чистым» границам, миграции внесенных междоузельных атомов).

4. Растяжение бикристалла вдоль плоскости границы кручения приводит к интенсификации зернограничной диффузии, обусловленной трансформацией дислокационной сетки. Деформация в направлении перпендикулярном границе влияет на диффузию слабее.

Апробация работы. Результаты работы доложены на международных и российских конференциях: XIX Петербургские чтения по проблемам прочности, посвященных 130-летию со дня рождения академика АН УССР Н.Н. Давиденкова, Санкт-Петербург (2010); 6th International Conference on Materials Structure and Micromechanics of Fracture (MSMF6), Brno, Czech Republic (2010); International conference “Fundamental and applied aspects of external fields action on materials”, Новокузнецк (2010); V (XXXVII) Международная научно-практическая конференция «Образование, наука, инновации – вклад молодых исследователей», Кемерово (2010); 7-я Всероссийская научно-техническая конференция студентов, аспирантов и молодых ученых «Наука и молодежь – 2010» (НИМ-2010), Барнаул (2010); Международный симпозиум «Наноматериалы для защиты промышленных и подземных конструкций», Усть-Каменогорск, Казахстан (2010); Открытая школа-конференция стран СНГ «Ультрамелкозернистые и наноструктурные материалы - 2010» (УМЗНМ-2010), Уфа (2010); 6-я Международная конференция «Фазовые превращения и прочность кристаллов», Черноголовка (2010); Республиканская научно-практическая конференция «Казахстан: 20 лет независимости и инноваций», Усть-Каменогорск, Казахстан (2011).

Публикации. Результаты работы опубликованы в 12 статьях в российских и зарубежных изданиях. Число публикаций в журналах, рекомендованных ВАК Минобрнауки РФ, составляет 6.

Структура и объем работы. Диссертация состоит из введения, пяти глав, заключения и списка литературы из 200 наименований. Работа изложена на 150 страницах машинописного текста, содержит 4 таблицы и 37 рисунков.

Работа выполнена в коллективе научной школы заслуженного деятеля науки РФ, д.ф.-м.н., профессора М.Д.Старостенкова.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность исследуемой проблемы, сформулирована цель диссертационной работы, описаны научная новизна, научная и практическая ценность, основные защищаемые положения. Дается краткое содержание работы по главам.

В первой главе диссертации проводится обзор экспериментальных и теоретических данных о структуре границ зерен. Рассматриваются современные представления о механизмах зернограничной диффузии и динамики атомной структуры вблизи границ в условиях деформации. В конце первой главы сделана постановка задачи.

а) б) Рис.1. Наблюдение структуры малоугловых границ зерен наклона (а) и кручения (б) с помощью электронного микроскопа. Фотографии взяты из [4, 5].

Структура границ описывается с помощью различных моделей. При малых углах разориентации удобнее пользоваться дислокационной моделью – граница зерен представляется в виде периодически расположенных дислокаций (дислокационной стенки или сетки). При повышении угла разориентации расстояние между ядрами дислокаций уменьшается, и при некотором значении угла ядра дислокаций сливаются друг с другом. Границы, имеющие угол разориентации больше этого значения, называются большеугловыми и описываются уже с использованием других структурных моделей, среди которых наиболее популярными являются модели структурных единиц и решетки совпадающих узлов. Относительно структуры малоугловых границ кручения в литературе говорится, что она аналогична структуре малоугловых границ наклона, за исключением того, что дислокации в границах кручения не краевые, как в границах наклона, а винтовые. При малых углах разориентации ядра винтовых дислокаций, соединяясь особым образом, образуют сетку с квадратными, прямоугольными или гексагональными ячейками [1-3]. В настоящее время, благодаря экспериментальным данным, полученным с помощью электронных микроскопов высокого разрешения, дислокационная структура малоугловых границ зерен не подлежит сомнению (рис.1).

Обычно полагается, что диффузия по границам зерен осуществляется посредством миграции вакансий или междоузельных атомов в плоскости границы. Вместе с тем, авторами работы [6], путем расчета энергии активации атомных скачков в различных направлениях в границе, показано, что миграция вакансии или междоузельного атома в межзеренной границе может иметь длиннопериодический характер, то есть включать одновременно несколько атомных перескоков, происходящих «без остановки». Исследования атомных механизмов диффузии по границам наклона в ГЦК металлах, проведенные в работах [7-9] с помощью метода молекулярной динамики, показали, что перемещения атомов в границе, как правило, не единичные, а коллективные, представляющие собой цепочки смещенных атомов «один за другим». В работах [7-9] было выяснено, что важную роль при этом играют изломы на зернограничных краевых дислокациях – цепочки атомных смещений начинаются и заканчиваются на изломах дислокаций.

В настоящей работе в качестве объектов исследования были выбраны границы кручения в Ni, Cu, Al, ориентированные в плоскостях (100), (110), (111) ГЦК решетки. Такой выбор обусловлен тем, что плоскости границ зерен с малыми индексами являются наиболее распространенными.

Вторая глава посвящена проблеме моделирования бикристалла с границами зерен кручения. В главе приводится описание метода молекулярной динамики, обосновывается выбор потенциалов межатомного взаимодействия, описываются методика построения и особенности моделей, используемых в настоящей работе, бикристаллов с границами кручения.

Рис.2. Схема создания расчетного блока с границей зерен кручения. – угол разориентации; ГЗ – граница зерен (серым цветом выделена плоскость границы); РБ – конечный расчетный блок (отмечен пунктирным контуром).






Pages:   || 2 | 3 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.