авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |

Электродинамика широкополосных комбинированных излучателей с существенной взаимосвязью полей ближней зоны

-- [ Страница 1 ] --

На правах рукописи

Беличенко Виктор Петрович

ЭЛЕКТРОДИНАМИКА ШИРОКОПОЛОСНЫХ КОМБИНИРОВАННЫХ ИЗЛУЧАТЕЛЕЙ С СУЩЕСТВЕННОЙ ВЗАИМОСВЯЗЬЮ ПОЛЕЙ БЛИЖНЕЙ ЗОНЫ

специальность 01.04.03 радиофизика

Автореферат

диссертации на соискание учёной степени

доктора физико-математических наук

Томск 2010

Работа выполнена в Томском государственном университете

Научный консультант: доктор физико-математических наук, профессор Якубов Владимир Петрович
Официальные оппоненты: доктор технических наук, профессор Кашкин Валентин Борисович доктор физико-математических наук, Бочкарёв Николай Николаевич доктор технических наук, профессор Малютин Николай Дмитриевич
Ведущая организация: Новосибирский государственный технический университет, г. Новосибирск

Защита состоится “24” июня 2010 года в 14 час. 30 мин. на заседании диссертационного совета Д 212.267.04 при Томском государственном университете по адресу: 634050, г. Томск, пр. Ленина, 36, ауд. 119

С диссертацией можно ознакомиться в Научной библиотеке Томского государственного университета

Автореферат разослан “____” марта 2010 г.

Ученый секретарь

диссертационного совета Пойзнер Б.Н.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

В радиофизике и радиоэлектронике уже длительное время сохраняется устойчивая тенденция миниатюризации радиоэлектронной аппаратуры и увеличения количества передаваемой информации. Важное место здесь занимают антенно-фидерные устройства. К антеннам предъявляются жесткие, порой трудно совместимые требования: стабильность электродинамических характеристик в широком частотном диапазоне, электромагнитная совместимость, малые вес и габариты, технологичность изготовления и т.д. В дополнение к перечисленному антенны, предназначенные для передачи и приема сверхширокополосных импульсных сигналов, должны иметь четко выраженный фазовый центр, постоянную амплитудно – частотную и линейную фазо – частотную характеристики в полосе частот, содержащей доминирующую часть спектра сигнала.

Существенной вехой при решении проблем увеличения полосы рабочих частот антенны стало создание спиральных и логопериодических антенн. Известны многочисленные варианты их выполнения, направленного на улучшение параметров и электродинамических характеристик. Однако основные недостатки большие габариты, нестабильность при изменении частоты фазового центра и выраженные дисперсионные свойства чрезвычайно затрудняют использование таких антенн в системах, предназначенных для неискаженных передачи и приема сверхширокополосных сигналов

Поэтому значительное внимание стало уделяться задачам анализа и синтеза, имеющим целью поиск продуктивных подходов к проблеме создания высокоэффективных сверхширокополосных антенн. Были предложены технологические и конструктивные решения в определенных рамках, удовлетворяющие предъявляемым требованиям. Здесь можно выделить такие антенны, как Impulse Radiating Antennas, Vivaldi Antennas, Scissor – Antennas, ТЕМ – антенны, плоские и объемные конструкции антенн с резистивными нагрузками, фрактальные антенны. Их параметры и электродинамические характеристики весьма обстоятельно представлены, например, в трудах конференции [1*]. Полезная и достаточно обширная информация содержится также в недавно опубликованной монографии [2*].



И все же, несмотря на отмеченное обстоятельство, приходится констатировать, что вплоть до последнего времени не был выработан достаточный комплекс представлений о физике излучения еще одного важного класса сверхширокополосных антенн, получивших название комбинированных.

Фактически концепция построения комбинированной антенны была сформулирована еще в [3*]. Она опиралась на качественный анализ энергетических соотношений в ближней зоне антенны. После этого были предложены некоторые конструктивные принципы создания таких антенн и разработаны разнообразные варианты конструкций [4*]. Основная особенность комбинированной антенны заключается в том, что она содержит, по крайней мере, одну комбинацию из излучателей электрического и магнитного типов. В ближней зоне у первых преобладает запас электрической энергии, а у вторых – магнитной.

Докладом на международном симпозиуме [29] и публикацией [13] в ведущем отечественном научном журнале, уже перед широким кругом исследователей, был поставлен вопрос о необходимости досконального изучения физических процессов в ближней зоне комбинированной антенны, поскольку без проведения такого исследования дальнейшее совершенствование известных и создание новых комбинированных антенн представлялось затруднительным.

Целью диссертационной работы

Исследование общих и специфических особенностей формирования поля излучения комбинированных излучателей, на основе анализа физических процессов существенной взаимосвязи активных и реактивных компонент полей ближней зоны, а также роли в этих процессах неизлучающих интерференционных потоков энергии.

Задачи диссертационной работы

  1. Постановка и разработка методов решения ряда модельных задач о возбуждении структур и антенн, характеризующихся порознь или в различных сочетаниях, кривизной и анизотропией проводимости, а также наличием геометрических сингулярностей типа изломов или заострений. При этом постановка каждой задачи связывается с проблемой оценки влияния существенной взаимосвязи, в виде взаимосвязи разноименных активных и реактивных компонент полей ближней зоны, на широкополосность структуры или антенны.
  2. Выявление общих закономерностей в формировании поля излучения таких структур и антенн и роли в них волн, характеризующихся пространственно распределенным дифференциальным резонансом поля, с точки зрения уменьшения общего запаса реактивной энергии, снижения добротности излучения и улучшения широкополосности.
  3. Анализ динамики неизлучающих интерференционных потоков энергии, образующихся за счет существенной взаимосвязи в виде взаимодействия одноименных активных и реактивных компонент полей в ближней зоне комбинированных излучателей, и поиск путей управления этими потоками.
  4. Расчет и анализ возможностей улучшения электродинамических характеристик комбинированных антенн на примерах их простейших типов.
  5. Формулировка общих подходов и принципов к созданию широкополосных излучателей, учитывающих специфику существенной взаимосвязи активных и реактивных компонент полей в ближней зоне излучателя.

Методы исследования основываются на использовании строгих математических методов решения электродинамических задач с гармонической, а также произвольной зависимостью от времени. Поля выражаются либо через свои азимутальные компоненты, либо через потенциалы Дебая. Искомые решения представляются контурными интегралами в плоскости комплексного переменного, в виде разложений по собственным функциям регулярных и сингулярных задач Штурма-Лиувилля. Используются бесконечное и конечные интегральные преобразования Конторовича-Лебедева, конечное интегральное преобразование Меллина, а также специальное интегральное преобразование по сферическим функциям. Изложен подход, сочетающий использование конечных интегральных преобразований и метода Винера-Хопфа. Развит метод решения канонических нестационарных задач, существенно опирающийся на нетрадиционное введение системы координат, в которой формулируется задача. Мультипольные разложения полей использованы: при решении задачи об оптимальном нестационарном излучении произвольной антенны; при расчёте запасённых энергий и добротности излучения произвольной антенны, а также ряда конкретных излучателей; при изучении неизлучающих интерференционных потоков энергии в ближней зоне комбинированного излучателя; при формулировке и решении задач синтеза широкополосных излучателей.

Научные положения, выносимые на защиту

  1. Широкополосность спирально проводящей структуры переменной кривизны в виде параболоида вращения, возбуждаемой системой электрических и магнитных токов, обеспечивается существованием волны, характеризующейся пространственно распределенным дифференциальным резонансом поля ближней зоны с асимптотически малым запасом реактивной энергии. В условиях большого замедления этот тип волны является доминирующим в совокупном спектре волн, содержащем в различных сочетаниях волны типа шепчущей галереи, пространственную, квазисобственные и соскальзывания.
  2. Комбинирование структуры сферической спиральной антенны с нерезонансным проводящим экраном конической формы приводит к снижению добротности существующих в ней множественных низкочастотных резонансов и это обеспечивает увеличение широкополосности антенны, т.
    е. расширение её полосы пропускания, а также позволяет путем изменения угла раскрыва конуса управлять направленными и поляризационными характеристиками поля в дальней зоне.
  3. Широкополосность клиновидных излучающих структур с радиальной проводимостью граней обеспечивается возбуждением двух волн, характеризующихся пространственно распределенным дифференциальным резонансом поля смешанного типа с нулевым запасом реактивной энергии. Описание спектра возбуждаемых волн получается с использованием композиции специального интегрального преобразования, имеющего ядро в виде сферической функции с комплексными степенью и порядком, и интегрального преобразования Конторовича-Лебедева.
  4. Введение в ближнюю зону стороннего источника пассивной сферической спиральной структуры приводит к возникновению неизлучающего интерференционного потока энергии и уменьшению суммарного запаса реактивной энергии, что обусловливает уменьшение добротности излучения и расширение полосы согласования такого комбинированного излучателя в область низких частот.
  5. Использование интерференции реактивных компонент полей ближней зоны излучателей электрического и магнитного типов позволяет уменьшить суммарный запас реактивной энергии и, тем самым, расширить полосу пропускания комбинированной антенны с сохранением направленных свойств.
  6. Управление безызлучательным переносом энергии в области интерференции активных и реактивных компонент поля ближней зоны, путем изменения амплитудно-фазовых соотношений возбуждающих электрических и магнитных токов в комбинированных антеннах, позволяет регулировать их импедансные и направленные характеристики в широкой полосе частот.

Достоверность результатов, выводов и научных положений диссертационной работы подтверждается тем, что:

  • используются апробированная модель спиральных структур [5] и строгие математические методы решения и анализа соответствующих электродинамических задач;
  • следующие из решений выводы относительно возбуждаемых типов волн, излучающих, направленных и поляризационных характеристик и широкополосности исследуемых структур и антенн (первое и второе научные положения) не противоречат сложившимся физическим представлениям о процессах излучения таких структур и антенн, а также физическим представлениям о свойствах волн с пространственно распределенным дифференциальным резонансом поля [6*];
  • выведенное новое интегральное преобразование в частном случае переходит в преобразование, независимо установленное другими авторами [7*], а формулировка третьего научного положения основывается на результате использования этого преобразования в композиции с широко известным интегральным преобразованием Конторовича-Лебедева и учитывает устоявшиеся физические представления о процессах возбуждения полей с пространственно распределенным дифференциальным резонансом.
  • На различных по постановке задачах была проведена отработка корректности математических построений в процессе композиции конечных интегральных преобразований и метода Винера-Хопфа (глава 4 диссертации). Корректность физических результатов для ряда ситуаций подтверждена сопоставлением с литературными данными, а также получением их другими авторами [8*,9*] и отличными от использованных в диссертации методами.
  • Для случая кольцевого излучателя предложенный метод решения задач о нестационарном излучении кольцевых и дисковых излучателей даёт решение, совпадающее с известным [10*];
  • результаты теоретического рассмотрения задачи об оптимальном излучении произвольной антенны согласуются с экспериментальными исследованиями потенциала современной высокомощной излучающей системы, проведенными сотрудниками ИСЭ СО РАН (г. Томск);
  • выводы об условиях возникновения неизлучающего интерференционного потока энергии и его влиянии на добротность излучения и полосу согласования (четвертое научное положение) не противоречат современным фундаментальным представлениям о механизмах формирования таких потоков энергии.
  • потенциальная возможность уменьшения суммарного запаса реактивной энергии следует из фундаментальной теоремы Пойнтинга для комплексных амплитуд поля. А обеспечение этой возможности путем использования интерференции реактивных компонент полей ближней зоны излучателей электрического и магнитного типов (пятое научное положение) следует из результатов аналитического и численного исследования. При этом расширение полосы пропускания комбинированной антенны с сохранением её направленных свойств подтверждено, как численными расчетами с использованием хорошо апробированного пакета программ 4NEC2, так и экспериментальными результатами других авторов [4*];
  • как таковая проблема управления безызлучательным переносом энергии в области интерференции активных и реактивных компонент поля ближней зоны системы электрических или магнитных дипольных излучателей затрагивалась в работах [11*,12*]. В диссертации аналитически и численно показано, что с помощью такого управления в комбинированных антеннах происходит регулирование их импедансных и направленных характеристик в широкой полосе частот (шестое научное положение). В то же время, вывод о поведении этих характеристик при изменении амплитудно-фазовых соотношений возбуждающих антенну электрических и магнитных токов подтвержден многими экспериментальными результатами других авторов (например, [4*]).
  • постановки и полученные решения двух задач синтеза удовлетворяют требованиям физической реализуемости, а в частном случае решение одной из этих задач совпадает с известным [13].

Научная новизна





  • Объяснена природа широкополосности спиральных структур с переменной кривизной.
  • Обоснован способ снижения добротности множественных низкочастотных резонансов в сферических спиральных антеннах.
  • Выявлена ключевая роль двух волн, характеризующихся пространственно распределенным дифференциальным резонансом поля смешанного типа с нулевым запасом реактивной энергии, в обеспечении широкополосности клиновидной структуры с радиальной проводимостью граней.
  • Обнаружен физический процесс, обусловливающий расширение в область низких частот полосы согласования комбинированного излучателя, в виде заключенного внутри пассивной сферической спиральной структуры стороннего источника.
  • Построена теория нового интегрального преобразования по сферическим функциям с комплексными степенью и порядком.
  • Развит новый подход, сочетающий использование конечных интегральных преобразований типа Конторовича-Лебедева или Меллина и метода Винера-Хопфа. Полезность этого подхода показана при решении граничных задач для структур-прототипов антенн с полупрозрачными поверхностями.
  • Разработан новый физически наглядный метод решения ключевых задач об излучении кольцевых и дисковых источников существенно нестационарного излучения.
  • Разработана новая, лишенная недостатков известной, методика оценки потенциала источников мощного сверхширокополосного излучения.
  • Проанализирован процесс переноса энергии в ближней зоне комбинированного излучателя за счёт формирования интерференционного потока энергии и подробно проанализированы общие и специфические особенности этого потока.
  • Развит новый подход к решению задачи синтеза излучателя с максимальной полосой согласования, в рамках которого для минимизации запаса реактивной энергии привлекаются неизлучающие распределения электрических и магнитных токов.

Научная ценность положений и полученных результатов определяется:

        • получением решений поставленных в работе модельных задач для спирально и радиально проводящих структур и антенн и их детальным анализом, что образует надежную основу для понимания физики излучения структур и спиральных антенн других типов;
        • демонстрацией, во-первых, возможности расширения полосы согласования комбинированного излучателя, в виде стороннего источника и введенной в его ближнюю зону пассивной сферической спиральной структуры, в область низких частот и, во-вторых, установлением причины расширения полосы согласования, связанной с возникновением неизлучающего интерференционного потока энергии.
        • развитой теорией нового интегрального преобразования с ядром в виде сферической функции с комплексными порядком и степенью;
        • доказанной возможностью композиции этого преобразования с преобразованием Конторовича-Лебедева при решении задачи о возбуждении клина с радиально проводящими гранями и проведённой полной классификацией возбуждаемых такой структурой волн как в частотной, так и во временной областях;
        • доказательством осуществимости конструктивной, с точки зрения решения поставленных в диссертации задач, композиции конечных интегральных преобразований типа Конторовича-Лебедева и Меллина с методом Винера-Хопфа.
        • идейной простотой и физической наглядностью предложенного метода решения ключевых задач об излучении кольцевых и дисковых излучателей существенно нестационарного излучения, непосредственно приводящего к решениям, неразделённым по пространственной и временной переменным;
        • доказательством того, что существенная взаимосвязь, в виде взаимосвязи разноименных или в виде взаимодействия одноименных активных и реактивных компонент полей ближней зоны, влияет на широкополосность комбинированных структур и антенн.
        • доказательством того, что расширить полосу пропускания комбинированной антенны с сохранением направленных свойств можно за счет использования интерференции реактивных компонент полей ближней зоны образующих антенну излучателей электрического и магнитного типов.
        • доказательством принципиальной возможности и важности управления безызлучательным переносом энергии в области интерференции активных и реактивных компонент поля ближней зоны комбинированной антенны для регулирования её импедансных и направленных характеристик в широкой полосе частот.

Практическую значимость работы определяют:



Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.