авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Механизмы зарядовой компенсации и свойства субмикрокристаллических феррит-гранатов при отклонениях от стехиометрии по катионному составу и кислороду

-- [ Страница 1 ] --

На правах рукописи

БУЛАТОВА АЛСУ НАИЛЕВНА

МЕХАНИЗМЫ ЗАРЯДОВОЙ КОМПЕНСАЦИИ И СВОЙСТВА СУБМИКРОКРИСТАЛЛИЧЕСКИХ ФЕРРИТ-ГРАНАТОВ ПРИ ОТКЛОНЕНИЯХ ОТ СТЕХИОМЕТРИИ ПО КАТИОННОМУ СОСТАВУ И КИСЛОРОДУ

Специальность 01.04.07 – физика конденсированного состояния

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата физико-математических наук

Астрахань – 2008

Работа выполнена на кафедре материаловедения и технологии наноструктурированных сред и в лаборатории физики конденсированного состояния Астраханского государственного университета

Научный руководитель: доктор физико-математических наук, профессор

Карпасюк Владимир Корнильевич

(Астраханский государственный университет)

Официальные оппоненты: доктор технических наук,

Лауреат Государственной премии

Беляев Игорь Васильевич

(НПО «Магнетон», г. Владимир);

кандидат физико-математических наук

Радайкин Виталий Васильевич

(Мордовский государственный университет, г.Саранск)

Ведущее учреждение: Государственный технологический университет «Московский институт стали и сплавов»

Защита состоится «26» декабря 2008 г. в 15 часов 30 минут на заседании диссертационного совета ДМ 212.009.06 при Астраханском государственном университете по адресу: 414056, г. Астрахань, ул. Татищева, 20а, в конференц-зале.

С диссертацией можно ознакомиться в библиотеке Астраханского государственного университета по адресу: 414056, г. Астрахань, ул. Татищева, 20а.

Автореферат разослан «____»____________2008 г.

Ученый секретарь диссертационного совета,

кандидат физико-математических наук, доцент В.В.Смирнов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность.

Сложные оксиды металлов со структурой граната {Ме3 3+}[Fe2 3+] (Fe3 3+)O12 2- традиционно являются важным материалом для различных областей микроволновой техники и магнитооптики. В настоящее время огромное внимание уделяется получению мелкодисперсных, особенно наноразмерных материалов и наноструктурированных керамик, которые обеспечивают не только высокие служебные параметры, но и способствуют уменьшению размеров изделий. В связи с этим, сегодня наблюдается совершенствование методов синтеза и расширение сферы практического применения гранатов.

Проблема получения феррит-гранатов с необходимыми и хорошо воспроизводимыми свойствами сводится в значительной мере к получению материалов с заданным химическим составом и определённой керамической микроструктурой, так как многие магнитные параметры ферритов (например, коэрцитивная сила, магнитная проницаемость) являются структурно-чувствительными, то есть существенно зависят от характеристик керамической структуры материала, включая размер и форму кристаллитов, размер и распределение пор. Существенными условиями, определяющими высокие потребительские качества материалов и изделий на их основе, являются достижение однородности химического и фазового состава, а также однородного морфологического строения синтезированных продуктов. Одним из путей решения проблемы создания новых высококачественных функциональных материалов является использование криохимической технологии и метода пиролиза при синтезе.



Повышение качества ферритов и создание новых материалов затрудняется слабой изученностью влияния дефектов нестехиометрии, как по кислороду, так и по катионному составу на электромагнитные и оптические свойства гранатов. Исследования дефектности, отклонений от стехиометрии, механизмов зарядовой компенсации представляют и теоретический интерес, так как дают информацию о деталях структуры кристаллов и их взаимосвязях со свойствами.

Таким образом, разработка новых методов синтеза, экспериментальные и теоретические исследования корреляции состояния ионов переходных металлов и кислорода с характеристиками дефектности и электромагнитными параметрами, а также изучение зависимости физико-химических свойств от размера зерен нестехиометрических твердых растворов ферримагнетиков со структурой граната являются актуальными как в плане развития соответствующих методов и представлений физики твердого тела, так и в связи с потребностями технологии синтеза перспективных материалов и управления их характеристиками.

Технологии создания и обработки керамических материалов входят в перечень критических технологий, утвержденных Президентом РФ.

Работа частично поддержана грантом Федерального агентства по образованию в рамках аналитической ведомственной целевой программы “Развитие научного потенциала высшей школы (2006-2008 годы)” (проект РНП.2.1.1.7605).

Цель и задачи работы.

Целью настоящей работы явилось исследование влияния на структурные параметры и электромагнитные свойства замещенного железо-иттриевого граната (ЖИГ) концентрации двухвалентной примеси, размера частиц и зерен в субмикронном диапазоне, во взаимосвязи с условиями синтеза и выявление механизмов зарядовой компенсации.

Объектами исследования были поликристаллические железо-иттриевые гранаты составов Y3-c Cac Fe5 O12 (где с=0; 0,05; 0,1; 0,13; 0,15; 0,17; 0,2 форм.ед.), синтезированные методом твердофазного синтеза, с использованием пиролиза и ультрадисперсные порошки Y2.9Ca0.1Fe5O12, полученные на основе криохимической технологии.

Hа основании проведенного анализа литературных данных и собственных предварительных исследований были поставлены следующие задачи:

    • изучить условия получения порошков и керамических образцов железо-иттриевых гранатов выбранных составов методом твердофазного синтеза, с использованием пиролиза и криохимической технологии;
    • установить зависимости особенностей морфологии частиц, микроструктуры железо-иттриевого граната от методов синтеза;
    • установить характер зависимости значений удельной намагниченности насыщения ЖИГ от размера зерен и частиц;
    • исследовать зависимость структурных, электрических и магнитных параметров замещенного железо-иттриевого граната от концентрации двухвалентной примеси;
    • установить характер влияния отклонения от стехиометрии при окислительных и восстановительных отжигах на основные структурные параметры и магнитные свойства поликристаллических ЖИГ заданных составов;
    • определить валентное состояние ионов железа в железо-иттриевом гранате с иновалентной примесью;
  • изучить особенности механизмов зарядовой компенсации иновалентной примеси в железо-иттриевом гранате в зависимости от ее концентрации;

Решение указанных задач осуществлялось с использованием комплекса инструментальных методов исследования: рентгеновской дифрактометрии, магнитных и электрических измерений, мессбауэровской спектроскопии, электронной микроскопии и электронно-зондового микроанализа.

Научная новизна работы:

  • впервые найдены условия синтеза и получены керамические образцы ЖИГ системы Y3-c Cac Fe5 O12 с субмикронными размерами зерен (500 нм);
  • впервые установлены условия получения и исследованы ультрадисперсные порошки ЖИГ, легированные двухвалентной примесью кальция, со средними размерами частиц 100 нм;
  • впервые изучены особенности морфологии порошков, керамической структуры и субмикрокристаллического состояния замещенных ЖИГ, синтезированных методом пиролиза и по криохимической технологии;
  • впервые исследована зависимость магнитных свойств порошков и поликристаллических гранатов Y3-c Cac Fe5 O12, от размера зерен и частиц в субмикронном диапазоне.

Практическая ценность.

Найденные закономерности влияния размера зерен, концентрации двухвалентной примеси и отклонения от стехиометрии по кислороду на формирование электрических и магнитных свойств замещенных железо-иттриевых гранатов могут быть использованы для управления технологическими процессами синтеза.

Определенные зависимости морфологии, микроструктуры, магнитных и структурных свойств от технологии синтеза, существование критических значений концентрации ионов двухвалентной примеси в железо-иттриевых гранатах, при которых происходит смена механизмов зарядовой компенсации и изменение структурных и электромагнитных свойств, нашли отражение в программах учебных курсов «Физика магнитных явлений», «Электронное строение вещества», «Магнитные полупроводники», а также в тематике дипломных работ студентов.

На защиту выносятся:

  • установленные особенности морфологии, микроструктуры замещенных железо-иттриевых гранатов, в зависимости от способа и условий синтеза;
  • установленные зависимости значений удельной намагниченности насыщения от размера зерен и частиц изученных гранатов;
  • положение о существовании в твердых растворах ЖИГ, легированных кальцием, критических значений концентрации ионов двухвалентной примеси, при которых происходит смена механизмов зарядовой компенсации и изменение электромагнитных свойств;
  • установленные закономерности и модельные представления о влиянии изменений содержания кислорода на структурные и магнитные характеристики субмикрокристаллических ЖИГ с двухвалентной примесью.

Апробация работы и публикации.

Материалы диссертации были представлены и обсуждены на Всероссийской конференции с международным Интернет-участием «От наноструктур, наноматериалов и нанотехнологий к наноиндустрии» (Ижевск, июнь2007), Международной конференции « Oxide materials for electronic engineering-fabrication, properties and application» (Львов, 2007), на VI Международном семинаре «Нелинейные процессы и проблемы самоорганизации в современном материаловедении» (Астрахань, ноябрь 2006), на научной конференции АГУ (Астрахань, апрель 2007), на Всероссийской научно-практической конференции «Физико-химические, биологические и медицинские аспекты нанотехнологий» (Астрахань, сентябрь 2008).

По теме диссертации опубликовано 9 печатных работ, в том числе 3 в журналах, рекомендованных ВАК.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка цитируемой литературы. Работа содержит 130 страниц и включает 29 рисунков, 18 таблиц и список литературы, состоящий из 154 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулирована цель работы, дана характеристика научной новизны и практической значимости полученных результатов, приведены данные об апробации работы и публикациях по теме диссертации, приведены основные положения и результаты выносимые на защиту, дана краткая характеристика разделов и объема материала диссертации.

В первой главе представлен литературный обзор, посвященный исследованиям ферритов со структурой граната.

Приведены данные об особенностях их кристаллической решетки и катионного распределения по неэквивалентным кристаллографическим позициям.

На основе трехподрешеточной модели Нееля рассмотрены магнитные свойства ферримагнитных полупроводников со структурой граната. Дано описание особенностей магнитных моментов переходных элементов, находящихся в различных валентных состояниях, а также представления о высоко- и низкоспиновых состояниях ионов железа.

Рассмотрены особенности механизма электропроводности в феррит-гранатах. Проведен анализ имеющихся в литературе данных о влиянии дефектов нестехиометрии и различных примесей на значение удельного сопротивления феррит-гранатов. Показаны основные закономерности формирования дефектов в оксидных системах и проблемы их классификации. При этом основное внимание уделено рассмотрению дефектов нестехиометрии и механизмам их зарядовой компенсации.

Приведены имеющиеся в литературе данные о влиянии окислительно-востановительных сред на структурные характеристики гранатов и особенностях зарядовой компенсации иновалентной примеси. Показано, что в настоящее время, остается открытым ряд вопросов, связанных со сменой механизма зарядовой компенсации при определенных концентрациях примеси в твердых растворах феррит-гранатов, допированных кальцием.





На основе анализа литературных данных показано, что в последние годы как в России, так и за рубежом активно проводятся исследования, посвященные разработке новых методов синтеза ферритов и изучению влияния размеров частиц и зерен на структурные и электромагнитные свойства феррит-гранатов, особое внимание при этом уделяется субмикронному и нано диапазону.

Во второй главе описаны методики синтеза объектов исследования. Представлены методы экспериментальных исследований, описание использованных приборов и установок, а также дана методика проведения окислительно-восстановительных отжигов.

Структурный и фазовый анализы был проведен на рентгеновском дифрактометре «Дрон-3М» методом порошковой рентгенографии.

Для исследований морфологии порошков, микроструктуры поверхности и микронеоднородностей были применены растровая электронная микроскопия (РЭМ) и рентгеноспектральный микроанализ. Микроструктура изучалась с помощью растрового электронного микроскопа JSM-5900LV и системы «Камебакс». Анализ изображений проводился в программе SIAMS FotoLab. Рентгеноспектральный микроанализ проводился для определения суммарного (среднего) состава образцов и изучения распределения концентрации элементов по их поверхности, а также определения состава неоднородностей. Анализ и обработка результатов, оценка погрешностей проводились статистическими методами с использованием теории малых выборок.

Для анализа распределения ионов железа по неэквивалентным узлам кристаллических решеток ферритов-гранатов и определения их валентного состояния была использована мессбауэровская спектроскопия. При исследованиях образцов применялся метод, основанный на съемке спектров поглощения гамма-квантов ядрами 57Fe. Образцы исследовалась на спектрометре МС-1101-Э под управлением ЭВМ с источником 57Со в матрице родия. Обработка, модельная расшифровка мессбауэровских спектров, определение их параметров производились с учетом априорной информации об объектах исследований с помощью программного комплекса MSTools.

Для определения электрической проводимости ферритовых образцов в работе был применен метод сопротивления растекания, основанный на измерении сопротивления структуры, состоящей из образца и металлического зонда, установленного на его плоской поверхности. Величина энергии активации электрической проводимости Еа определялась по тангенсу угла наклона кривой температурной зависимости тока объемной проводимости, построенной в координатах ln(I)=f(1/kT), где k – постоянная Больцмана, Т – температура образца.

Удельная намагниченность () измерялась в магнитном поле напряженностью 5,6 кЭ с использованием микровеберметра Ф-191.

С целью изменения содержания кислорода в образцах использовались окислительный отжиг при давлении кислорода 105 Па и восстановительный отжиг при парциальном давлении кислорода 10-8 Па при температуре 900оС. Окислительные отжиги производились в трубчатой печи СУОЛ-0,25 1/12,5-И2, поддержание температуры осуществлялось с точностью 40С. Подъем температуры в печи осуществлялся при введенных образцах, время изотермической выдержки варьировалось от 4 до 12 часов, затем образцы извлекались из печи и закаливались. Восстановительные отжиги производились в вакуумной циркуляционной установке, разработанной и созданной в ГУ ИМЕТ УрО РАН. После ввода образцов в изотермическую зону установки производилась откачка воздуха и подъем температуры. Время изотермической выдержки составляло от 4 до 12 часов, затем образцы извлекались из печи и закаливались в вакууме.

В качестве объектов исследования были выбраны составы Y3-c Cac Fe5 O12 (с=0; 0.05; 0.1; 0.13; 0.15; 0.17; 0.2 форм. ед.). Серии образцов железо- иттриевых гранатов выбранных составов, синтезировали с использованием метода обычных твердофазных реакций, с применением пиролиза и криохимической технологии.

Для синтеза феррит-гранатов заданного состава по керамической технологии в качестве исходных веществ использовали оксиды: Y2O3 (марки ИтО-II), CaCO3 (ч), Fe2 O3 (чда). После расчета шихты и предварительного взвешивания компонентов с точностью до 0.001г, навески перемешивали в среде этилового спирта в планетарной мельнице FRITSH в течение 60 минут. Затем производили сушку шихты в стальных кюветах, с использованием специальной сушильной печи, и прессование под давлением в виде таблеток. После предварительного обжига при 1150°С в течение 4 часов, проводили второй помол и смешивание в среде этилового спирта в планетарной мельнице в течение 60 минут с последующей сушкой и формировкой из пресспорошка, с добавлением связки (10 % от общего веса 10%-ного водного раствора поливинилового спирта), под давлением образцов в виде таблеток. Заключительным этапом был высокотемпературный обжиг образцов в воздушной атмосфере при 1300 °С в течение 8 часов с охлаждением до 110°С со скоростью 50°C/час и последующим охлаждением до комнатной температуры вместе с печью.

На основе криохимической технологии были получены порошки железо-иттриевого граната состава Y2.9Ca0.1Fe5O12. В качестве реагентов использовались нитраты металлов, входящих в его состав. Криогранулы исходных смесей солей, взятых в стехиометрическом соотношении конечного состава сложного оксида, на стадии криокристаллизации, помещались в охлажденый лоток, который устанавливался на греющую плиту, расположенную в сублимационной камере. В результате посредством вакуум-сублимационной сушки были получены мелкодисперсные порошки (прекурсоры) нитратов металлов для последующей термической обработки. Для кристаллизации и стабилизации параметров был проведен высокотемпературный отжиг порошков при температуре 780 0С, в течение 6 часов.

 Микрофотография гранул Y2,9Ca0,1Fe5O12 -0

Рис. 1. Микрофотография гранул Y2,9Ca0,1Fe5O12

Для получения феррит-гранатов методом пиролиза в качестве основных реагентов использовали нитраты металлов, входящих в его состав. После смешивания нитратов, в заданном количестве, с глицином при температуре 900С до образования однородного вязкого геля, производили его нагревание до температуры 600 0 С с целью выпаривания горючих нитратов. При этом происходило осаждение органических соединений и образование темно- красного композита в виде липкого пепла (золы). Затем проводили формировку из полученного рыхлого композита-порошка под давлением образцов в виде таблеток и высокотемпературный отжиг образцов в воздушной атмосфере при 900°С в течение 5 часов с охлаждением до 700°С со скоростью 50°С/час и последующим охлаждением до комнатной температуры вместе с печью.

Проведенный рентгенографический анализ позволил сделать вывод об однофазности всех синтезированных образцов.



Pages:   || 2 | 3 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.