авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Методы микроволнового зондирования,устойчивые к изменению условий измерения

-- [ Страница 1 ] --

На правах рукописи

Канаков Владимир Анатольевич

МЕТОДЫ МИКРОВОЛНОВОГО ЗОНДИРОВАНИЯ,
УСТОЙЧИВЫЕ К ИЗМЕНЕНИЮ УСЛОВИЙ ИЗМЕРЕНИЯ

01.04.03 – Радиофизика

Автореферат
диссертации на соискание ученой степени
доктора физико-математических наук

Нижний Новгород - 2011 г.

Работа выполнена в государственном образовательном учреждении
высшего профессионального образования
«Нижегородский государственный университет им. Н.И. Лобачевского»

Официальные оппоненты: доктор физико-математических наук

профессор В.Г. Гавриленко

доктор физико-математических наук

профессор С.В. Голубев

доктор технических наук
профессор О.Р. Никитин

Ведущая организация: ФГНУ «Научно-исследовательский радиофизический институт»

Защита состоится «_____» ____________ 20___ г. в _________ на
заседании диссертационного совета Д 212.166.07 при Нижегородском
государственном университете им. Н.И. Лобачевского по адресу 603950, Нижний Новгород, пр. Гагарина, 23, корп. 1, ауд. 420.

С диссертацией можно ознакомиться в фундаментальной библиотеке
Нижегородского государственного университета им. Н.И. Лобачевского.

Отзывы в двух экземплярах, заверенные печатью учреждения, просим
отравлять по указанному адресу учёному секретарю совета.

Автореферат разослан «_____» _______________ 20___ г.

Учёный секретарь
диссертационного совета
к.ф.-м.н., доцент Черепенников В.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Микроволновое зондирование является эффективным методом экспериментального исследования различных физических объектов и широко применяется на практике в дистанционном зондировании природных сред, радио- и гидролокации, имиджинговых и локационных системах малого радиуса действия, системах неразрушающего контроля, технических средствах медицинской диагностики. Основными достоинствами микроволнового зондирования являются невозмущающий характер измерений, их непрерывность, высокая производительность и потенциальная точность, а также возможность определения параметров неоднородностей прозрачных для электромагнитных или акустических волн миллиметрового и сантиметрового диапазонов сред. Этими достоинствами обусловлено активное развитие метода микроволнового зондирования в настоящее время (см., например, Волосюк В.К., Кравченко В.Ф. Статистическая теория радиотехнических систем дистанционного зондирования и радиолокации. М.: Физматлит, 2008) и его широкое внедрение в практику измерений характеристик изменяющихся во времени (динамических) объектов (см. Михайлов А.Л. и др. Некоторые результаты применения в ИФВ РФЯЦ-ВНИИЭФ радиоинтерферометров мм диапазона длин волн для изучения газодинамических процессов // Труды Междунар. конф. «7 Харитоновские тематические научные чтения. Экстремальные состояния вещества. Детонация. Ударные волны». Саров. 2005. С. 649-654).

В то же время при реализации потенциальных возможностей метода микроволнового зондирования во многих случаях возникают трудности, связанные с тем, что в ходе измерений наряду с изменением параметров объекта могут существенно меняться и условия измерений (расстояние до объекта, характеристики канала распространения излучения, уровень шумов и др.). Так, например, при измерении скорости горения с помощью микроволнового интерферометра точность измерений существенно снижается из-за влияния таких факторов, как вибрация экспериментального оборудования, сжимаемость топлива, отражение от плазмы пламени, шероховатость и кривизна поверхности горения, затухание и рассеяние зондирующего излучения (см. Зарко В.Е. и др. Методические проблемы измерения скорости горения твердых топлив с использованием СВЧ-излучения // ФГВ. 2000. № 1. С. 68–78). Наибольшие трудности возникают при зондировании динамических объектов, находящихся на малом расстоянии от антенны системы микроволнового зондирования (СМЗ), что характерно для лабораторных исследований. При этом компактность экспериментальных установок приводит к тому, что изменение свойств объекта (его координат, скорости, размеров и т.д.) существенно меняет и условия измерения.



Настоящая работа посвящена развитию методов микроволнового зондирования, способных эффективно работать при существенном изменении как свойств объекта измерения, так и условий измерения. Рассмотрение ведется на примере актуальных прикладных задач метода микроволнового зондирования, включающих дистанционное зондирование атмосферных осадков, измерение температуры внутренних органов человека, диагностику параметров плазмы оптического пробоя, акустическую локацию источников шума, интерферометрическое измерение скоростей ударных и детонационных волн.

В задаче о зондировании атмосферных осадков в диссертации решается проблема снижения энергетического потенциала СМЗ в результате изменяющегося воздействия гидрометеоров на антенну СМЗ. Применительно к медицинской радиотермометрии предложен способ устранения ошибок измерения, связанных с неконтролируемыми изменениями условий контакта между антенной и телом пациента. Разработанная в диссертации система диагностики плазмы позволяет учитывать изменение соотношения между яркостной температурой плазмы и антенной температурой радиометра. Для задач локации распределенных источников шума разработаны алгоритмы, учитывающие нестационарный характер взаимных помех от различных частей источника. Для решения традиционно сложной проблемы измерения мгновенных скоростей газодинамических процессов разработаны алгоритмы компенсации искажений интерферограмм, позволившие добиться в эксперименте предельно достижимой точности измерений.

Предложенные в диссертации методы компенсации изменения условий измерения, основанные на сочетании непрерывной калибровки параметров измерительной системы с инвариантными к изменяющимся параметрам алгоритмами обработки сигналов, имеют важное значение для развития экспериментальных методов радиофизических исследований и целого ряда практических приложений техники микроволнового зондирования.

Цель исследования – разработка и экспериментальная реализация методов микроволнового зондирования, позволяющих повысить устойчивость измерительных систем в изменяющихся условиях измерений.

Для достижения поставленной цели применительно к ряду актуальных конкретных приложений в диссертации решаются следующие задачи:

1. Разработка и реализация системы непрерывной калибровки СМЗ при внешнем воздействии на ее антенну.

2. Разработка способа одновременного измерения яркостной температуры, площади поперечного сечения ослабления и площади поперечного сечения рассеяния коллективного оптического разряда в атмосфере.

3. Построение алгоритмов обработки широкополосных импульсных сигналов СМЗ, устойчивых к случайным вариациям параметров канала распространения излучения.

4. Развитие метода многопозиционного пассивного зондирования на случай совокупности распределенных и множественных источников широкополосного шума.

5. Создание алгоритмов обработки сигналов микроволнового интерферометра при зондировании газодинамического процесса, развивающегося в компактной экспериментальной установке.

6. Разработка и реализация метода измерения параметров сложного движения фронта газодинамического процесса с помощью многоканального радиоинтерферометра.

Работа выполнена в Нижегородском государственном университете им. Н.И. Лобачевского. Экспериментальные исследования проводились: на базе метеорологического радиолокатора МРЛ-5 Госкомгидромета СССР (г. Москва), на специально созданных экспериментальных установках в лабораториях радиофизического факультета ННГУ им. Н.И. Лобачевского (г. Нижний Новгород), на экспериментальных площадках РФЯЦ-ВНИИЭФ (г. Саров). Компьютерные эксперименты проводились на базе вычислительных средств кафедры радиотехники радиофизического факультета ННГУ им. Н.И. Лобачевского.

Научная новизна исследования состоит в следующем:

    • разработан комплекс методов непрерывной калибровки СМЗ по внутренним эталонам, компенсирующий случайные вариации параметров антенны;
    • разработан способ динамического измерения яркостной температуры радикально изменяющего свои размеры объекта;
    • решена задача оценки характеристик оптимального обнаружителя импульсных широкополосных шумовых сигналов с известной формой зависимости дисперсии шума от времени для сигналов с различной базой;
    • получены оптимальные байесовские оценки значений и погрешностей временных и частотных сдвигов однократно воспроизведенных импульсных широкополосных сигналов по среднему значению распределения апостериорной вероятности фазовым методом с учетом рассеяния в канале передачи;
    • теоретически показана возможность применения пассивной фазовой разностно-дальномерной схемы зондирования для определения границ распределенного источника нестационарного широкополосного шума и ее динамики;
    • разработан метод однозначного определения координат нескольких сосредоточенных источников широкополосного шума путем вычисления трехмерных взаимно-корреляционных функций сигналов разностно-дальномерной схемы зондирования;
    • разработан метод одновременного измерения нескольких параметров газодинамического процесса (скорости ударной или детонационной волн, профиля фронта ударной волны, массовой скорости и показателя преломления вещества) с помощью одноканального радиоинтерферометра в условиях многомодового распространения зондирующего излучения в экспериментальной установке;
    • разработан метод измерения характеристик сложного движения отражающей поверхности (суперпозиции поступательного движения, вращения и малых деформаций) с помощью радиоинтерферометра, имеющего два активных и четыре пассивных измерительных канала.

Практическая значимость полученных результатов состоит в том, что разработанные методы позволяют:

    • уменьшить ошибки измерений, связанные с внешним влиянием на антенну СМЗ;
    • уменьшить ошибки измерений, связанные с динамическими изменениями параметров объекта и канала распространения зондирующего излучения;
    • контролировать динамику совокупности сосредоточенных и распределенных источников шумового излучения;
    • повысить информативность микроволновой интерферометрии газодинамических процессов.

Разработанные методы могут применяться в экспериментальных исследованиях газодинамических процессов, динамических свойств конструкций и материалов, в технике неразрушающего контроля, дистанционного зондирования, радио- и гидролокации, в технических средствах медицинской диагностики.

Результаты диссертационной работы были использованы в исследовательской и проектно-конструкторской деятельности ФГУП РФЯЦ-ВНИИЭФ и ФГУП ФНПЦ НИИИС им. Ю.Е. Седакова при выполнении НИОКР по разработке лабораторных макетов и методик применения одноканальных и многоканальных интерферометров миллиметрового диапазона длин волн, предназначенных для измерения параметров движения газодинамических объектов, в рамках научно-технической программы Росатома в 2003-2010 гг. Акты об использовании результатов диссертационной работы представлены в Приложении к диссертации.

Обоснованность и достоверность результатов диссертации. Результаты диссертации получены с помощью апробированных научных методов исследования и согласуются с известными теоретическими положениями статистической радиотехники, электродинамики и общей акустики. Достоверность полученных результатов и выводов подтверждается данными компьютерного моделирования и экспериментальных исследований на лабораторных макетах.

Положения, выносимые на защиту:

        1. Разработан и экспериментально реализован метод непрерывной калибровки контактного радиометра миллиметрового диапазона длин волн с отражающим модулятором и встроенным генератором шума, позволяющий измерять термодинамическую температуру диэлектрического тела с изменяющимся коэффициентом поглощения.





          Метод обеспечивает долговременную погрешность, близкую к флуктуационной чувствительности радиометра.

        2. Разработан и экспериментально реализован способ синхронного активно-пассивного зондирования нестационарного объекта, обеспечивающий непрерывные совместные измерения параметров собственного и рассеянного излучения общим измерительным приемником с разделением сигналов по их форме. Метод позволяет измерять динамику яркостной температуры объекта при значительных изменениях во времени размеров объекта.
        3. Теоретически определены характеристики обнаружения для двух типов обнаружителей импульсных шумовых сигналов – оптимального, с известной формой огибающей, и адаптивного к форме огибающей. Показано, что эти характеристики зависят от величины базы импульсного шумового сигнала и от формы его огибающей.
        4. Предложен алгоритм оценки значений и погрешностей временных и частотных сдвигов импульсных широкополосных сигналов фазовым методом – по среднему значению апостериорного распределения вероятностей сдвига, рассчитанному по одной реализации сигнала. Смещение оценок из-за рассеяния в канале передачи при большом отношении сигнал-шум рассеяния соответствует смещению оценки максимального правдоподобия для полностью известного сигнала и существенно лучше такой оценки при неизвестной начальной фазе.
        5. Предложен фазовый метод измерения временных задержек широкополосных сигналов в разностно-дальномерных системах локации, который позволяет определять границы распределенного источника нестационарного широкополосного шума и ее динамику. В присутствии помехи в виде аддитивного белого гауссова шума и большом отношении сигнал-шум ошибки измерения временной задержки будут иметь распределение Коши.
        6. Разработан метод однозначного определения координат нескольких сосредоточенных источников широкополосного шума путем вычисления трехмерных взаимно-корреляционных функций сигналов разностно-дальномерной схемы зондирования.
        7. Разработаны алгоритмы компенсации искажений сигналов микроволнового интерферометра. Алгоритмы апробированы при обработке результатов серии газодинамических экспериментов, достигнутая при этом точность результатов близка к потенциальной.
        8. Разработан и экспериментально реализован метод одновременного измерения нескольких параметров газодинамического процесса с помощью одноканального радиоинтерферометра в условиях многомодового распространения зондирующего излучения в экспериментальной установке.
        9. Разработан и экспериментально реализован метод измерения характеристик поступательно-вращательного движения слабодеформирую-щейся отражающей поверхности с помощью многоканального радиоинтерфе-рометра.

Апробация результатов исследования. Основные положения и результаты работы докладывались и обсуждались на 23 конференциях, в том числе 7 международных, 12 всероссийских и 4 региональных.

Работа выполнена в рамках Ведущей научной школы РФ «Физика нелинейных и случайных волн в приложении к проблемам акустики и радиофизики» (НШ 3700.2010.2), в рамках научно-технической программы Росатома по госконтрактам № 0506/11-725 от 05.01.2004, № 0506/11-901 от 11.01.2005, № 0506/11-426 от 22.12.2007.

Публикации. Результаты диссертационной работы отражены в 56 публикациях, в том числе: 16 статей в журналах, вошедших в перечень ВАК, 2 авторских свидетельства на изобретение и один патент на полезную модель, 8 статей в других российских журналах, 14 публикаций в трудах международных, российских и региональных конференций, 15 публикаций тезисов докладов на различных конференциях. Список публикаций по теме диссертации с указанием личного вклада соискателя приведен ниже.

Личный вклад автора. 11 работ опубликовано соискателем без соавторов. В остальных работах его вклад в постановку и решение задач, анализ полученных результатов и написание текста в части относящейся к теме диссертации является основным. Приведённые в диссертации результаты получены им лично.

Структура и объем диссертации. Диссертационная работа состоит из введения, шести глав, заключения, библиографического списка, приложений и изложена на 417 страницах машинописного текста. Библиографический список включает 406 ссылок.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснована актуальность работы, определены цель и задачи диссертации, отмечается научная новизна и практическая значимость, обоснованность и достоверность результатов, формулируются защищаемые положения. Кратко излагается содержание разделов диссертации.

В первой главе диссертации сформулирована и решена задача непрерывной калибровки СМЗ по внутренним эталонам, компенсирующей случайные вариации параметров антенны под воздействием внешних факторов. Если в процессе динамических измерений требуется метрологически обеспеченное значение одного или нескольких параметров антенной системы, возникает проблема непрерывной калибровки этих параметров параллельно с процессом зондирования. Так, если информация об объекте зондирования содержится в энергетических параметрах принимаемого сигнала, то требуется калибровка коэффициента усиления и шумовой температуры антенны, коэффициента отражения от границы антенна – окружающая среда.

В разделе 1.1 описывается способ непрерывной калибровки активной СМЗ при вариациях коэффициента усиления антенны в приложении к радиолокационному методу измерения интенсивности атмосферных осадков при воздействии дождя на радиопрозрачное укрытие метеорологического радиолокатора сантиметрового диапазона длин волн. Эти измерения относятся к области задач дистанционного зондирования природных сред. Предложенный метод прямо реализует принцип параллельной калибровки антенны СМЗ с помощью эталонной антенны с аппаратным разделением опорного и информационного сигналов.

Способ измерения состоит в следующем. В заданном направлении, определяемом ориентацией неподвижной эталонной антенны, с помощью радиолокатора осуществляется поиск метеоцели и измеряется средняя мощность рассеянного ей радиолокационного сигнала. Затем к приемнику радиолокатора подключается эталонная антенна таким образом, чтобы на передачу зондирующего сигнала продолжала работать штатная антенна, и измеряется мощность сигнала от той же цели, принятого эталонной антенной. Отношение мощностей сигналов, принятых на разные антенны (P1/P2), прямо пропорционально отношению их коэффициентов усиления (G1/G2). Тогда G1=G2k(P1/P2), где , а f1(,) – диаграмма направленности антенны радиолокатора. Из этого соотношения видно, что точность контроля вариаций величины G1 относительно некоторого постоянного уровня определяется ошибкой измерения отношения мощностей сигналов приемником радиолокатора и пределами возможных вариаций параметров эталонной антенны за время измерений.



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.